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Abstract

We establish a new xed point result for measurable-selection-valued correspondences with
nonconvex and possibly disconnected values arising from the composition of Caratheodory
functions with an upper Caratheodory correspondence. We show that, in general, for any
composition of Caratheodory functions and an upper Caratheodory correspondence, if the
upper semicontinuous part of the underlying upper Caratheodory correspondence contains
an upper semicontinuous sub-correspondence taking contractible values, then the induced
measurable-selection-valued correspondence has xed points. An excellent example of
such a composition, from game theory, is provided by the Nash payo correspondence of
the parameterized collection of one-shot games underlying a discounted stochastic game.
The Nash payo correspondence is gotten by composing players’ parameterized collection
of state-contingent payo functions with the upper Caratheodory Nash equilibrium cor-
respondence (i.e., the Nash correspondence). As an application, we use our xed point
result to establish existence of a stationary Markov equilibria in discounted stochastic
games with uncountable state spaces and compact metric action spaces.

Key words and phrases. approximate Caratheodory selections, xed points of nonconvex val-
ued correspondences, contractible-valued sub-correspondences, weak star convergence, stationary
Markov equilibria, discounted stochastic games.
JEL Classi cation: C7



1 Introduction
We establish a new xed point result for measurable-selection-valued correspondences with
nonconvex and possibly disconnected values arising from the composition of Caratheodory
functions with an upper Caratheodory correspondence. We show that, in general, for any
composition of Caratheodory functions and an upper Caratheodory correspondence, if the
upper semicontinuous part of the underlying upper Caratheodory correspondence contains
an -valued, upper semicontinuous sub-correspondence (i.e., an -valued sub-USCO),
then the induced measurable-selection-valued correspondence has xed points. An ex-
cellent example of such a composition is provided by discounted stochastic games. In
particular, the Nash payo selection correspondence of the parameterized collection of
one-shot games underlying a discounted stochastic game is gotten by composing players’
parameterized collection of state-contingent payo functions with the upper Caratheodory
Nash equilibrium correspondence (i.e., the Nash correspondence). By Blackwell’s The-
orem (1965), extended to stochastic games, the discounted stochastic game will have a
stationary Markov equilibrium if and only if the Nash payo selection correspondence
has xed points. As an application, we use our xed point result to establish existence
of stationary Markov equilibria in discounted stochastic games with uncountable state
spaces and compact metric action spaces.

2 The Primitives of the Fixed Point Problem
The primitives of our xed point problem are given by the following list, [A-1]:

(1) ( ), a probability space, where is complete separable metric space and is
a probability measure de ned on the Borel - eld ;
(2) ( k·k ), the separable norm dual of a separable Banach space ( k·k);
(3) , a norm bounded, weak star closed, convex subset of , equipped with the
compact metrizable weak star topology inherited from , a topology denoted by or
by ( );
(4) , a convex, compact metrizable subset of a locally convex Hausdor topological
vector space equipped with metric compatible with the locally convex topology on
inherited from ;

(5) L , the Banach space of all -equivalence classes of measurable functions de ned on
with values in a.e. [ ], equipped with the weak star topology inherited from L , a

topology denoted by or by (L L1 );1
(6) N (· ·), an upper Caratheodory correspondence (measurable in on and upper
semicontinuous in on L ),

N (· ·) : ×L ( ),

taking values in ( ), the collection of all nonempty -closed subsets of with

N ( ) ( ) a.e. [ ]

where ( ) is a measurable correspondence taking nonempty, convex, -closed
values in ;
(7) (· · ·), a Caratheodory function,

(· · ·) : × ×L ,

1We will denote by the prequotient of L (i.e., denotes the space of all measurable functions
de ned on with values in a.e. [ ])
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such that (i) for each , ( · ·) is × -continuous, where × := + ,
and (ii) for each ( ) ×L , (· ) is ( )-measurable;
(8) P(· ·), an upper Caratheodory correspondence given by the composition of ( · )
with N ( ),

( ) P( ) := { : = ( ) for some N ( )} .

2.1 Observations

(1) By the Alaoglu Compactness Theorem, any k·k -bounded and -closed subset of
is -compact, and by Theorem 6.30 in Aliprantis and Border (2006) and the separability
of , any k·k -bounded subset is metrizable. Thus, the convex subset of is convex,
-compact and metrizable.
(2) Because is separable, is (norm) separable if and only if has the Radon-

Nikodym property (Bourgin, 1983, Theorem 5.2.12). Moreover, has the Radon-
Nikodym property if and only if for each -continuous vector measure, : , of
bounded variation, there exists an integrable function 1 such that for all ,
( ) =

R
( ) ( ) (Diestel and Uhl, 1977).

(3) A function : is (a) strongly measurable if there exists a sequence { }
of -valued, ( -measurable) simple functions such that

k ( ) ( )k 0 a.e. [ ]

(b) scalarly or weakly measurable if h ( )i is ( )-measurable for all ,
where is the Borel - eld in (the real numbers), and (c) ( )-measurable if
for all Borel sets

1( ) := { : ( ) } ,

where is the Borel - eld generated by the -topology in . By Lemma 11.37
in Aliprantis and Border (2006), if (·) is strongly measurable, then (·) is ( )-
measurable. By the Pettis Measurability Theorem (Diestel and Uhl, 1977, p. 42) if
( \ ) is norm separable for with ( ) = 0 (i.e., o a set of -measure zero,
the range of (·) is norm separable) and if (·) is ( )-measurable, then (·) is
strongly measurable. In addition, by Proposition A.1 in Cornet and Martin-da-Rocha
(2005), (·) is ( )-measurable if and only if (·) is scalar measurable. Thus, letting

(the prequotient of L ) be the set of all ( )-measurable functions de ned on
taking values a.e. [ ] in the -closed and k·k -bounded subset of the norm dual
, we have for each (·) that (·) is strongly measurable because ( \ ) for

with ( ) = 0 and by Theorem 7.7 in Kahn (1985) is k·k -separable. Thus,
each function (·) in the prequotient space of ( )-measurable functions de ned
on and taking values a.e. [ ] in the -compact subset of the norm dual is not
only ( )-measurable, but also scalarly measurable, as well as strongly measurable.
Now to the details of the problem.

3 The Fixed Point Problem
Consider the measurable-selection-valued correspondence,

S (P(· )) :=
©

(·) L : P( ) a.e. [ ]
ª

induced by an upper Caratheodory correspondence,

( ) P( ) := { : = ( ) for some N ( )}
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gotten by composing the continuous function, ( · ) : , with the upper
Caratheodory correspondence, N (· ·) : ×L ( ). Here, ( ) is the collec-
tion of all nonempty, -closed subsets of . We will sometimes denote this composition
by

( ) ( N ( ) ).

We will use the notations S (P(· )), S (P ), and S (P(·)) to de-
note our measurable-selection-valued correspondence. In general, the induced measurable
selection valued correspondence, S (P(·)), of an upper Caratheodory correspondence,
P(· ·), while nonempty valued is neither convex-valued nor closed-valued in the weak star
topology - and these facts make the xed point problem for such correspondences di cult.
Under assumptions [A-1], we will show that if in each state the USCO (upper semi-
continuous, nonempty, compact-valued) part N ( ·) of N (· ·) contains an approximable
sub-USCO, ( ·) - for example, if for each the sub-USCO,

( ) := ( ),

is -valued (for example, convex valued, or more generally, contractibly valued) - then
there exists L , such that

( ) = P( ) a.e. [ ],

implying that
S (P )

It is interesting to note that if for each , (·) is a minimal USCO belonging to N (·),
then ( ) is single valued - and hence contractibly valued - for is a -dense subset of
the parameter space, L . Thus, if on the -meager subset of L where (·) is multi-
valued, (·) takes connected, locally connected, and hereditarily unicoherent values, then
(·) will be contractibly valued for all L . Page (2013) has shown, under the same

assumptions on the primitives as those made here, that if in addition, in each state
the parameterized collection, { ( · ) : L }, is uniformly equicontinuous, then all
minimal USCOs belonging to the USCO part of N (· ·) are essentially-valued (in the sense
of Fort, 1950) as well as connected-valued. Thus, save for a meager set, under assumptions
[A-1] and the uniform equicontinuity of

{ ( · ) : L }
for each , P(· ·) := (· N (· ·) ·) is by its very nature close to having an induced
selection correspondence,

S (P ) := S ( (· N (· ) )),

possessed of xed points.

4 Approximable Upper Caratheodory Correspondences
Let U - := U(L ( )) denote the collection of all upper semicontinuous corre-
spondences taking nonempty, -closed (and hence -compact) values in . Following
the literature, we will call such mappings, USCOs (see Crannell, Franz, and LeMasurier,
2005, Anguelov and Kalenda, 2009, and Hola and Holy, 2009). Given any A U - ,
denote by U - [A] the collection of all sub-USCOs belonging to A, that is, all USCOs

U - whose graph,

:= {( ) L × : ( )} ,
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is contained in the graph of A,
A := {( ) L × : A( )} .

We will call any sub-USCO, U - [A] a minimal USCO belonging to A, if for any
other sub-USCO, U - [A], implies that = (see Drewnowski
and Labuda, 1990). We will denote by [A] the collection of all minimal USCOs belonging
to A.
Given upper Caratheodory correspondence, N (· ·), the USCO part is given by

N := {N ( ·) U - : } .
We begin with a formal de nition of approximable upper Caratheodory correspon-

dences.

De nition 1 (Approximable Upper Caratheodory Correspondences):
We say that the upper Caratheodory correspondence, N (· ·), is approximable if the
USCO part,

N := {N ( ·) U - : } ,
is such that in each state there is a sub-USCO,

( ·) U - [N ( ·)],
such that for any 0, there exists a - -continuous function,

(·) : L ,

having the property that for each ( ( )) L × there exists ( ) ( ·)
such that

( ) + ( ( ) ) ,

or equivalently, such that for any 0, there exists a - -continuous function,
(·) : L , having the property that

× ( ( ·)),
where × ( ( ·)) is × -open enlargement of ( ·) consisting of those
points, ( ), in L × at less than distance from ( ·).
A function : × L is Caratheodory if it is ( )-measurable in for

each and - -continuous in for each .

De nition 2 (Caratheodory Approximable Upper Caratheodory Correspondences):
We say that an upper Caratheodory correspondence, N (· ·), is Caratheodory
approximable if for any 0, there exists a Caratheodory function,

: × L ,

having the property that for each ( ) ×L and each ( ( )) L × there
exists ( ) N ( ·) such that

( ) + ( ( ) ) ,

or equivalently, such that for any 0, there exists a Caratheodory function,
: ×L , having the property that for each

( ·) × ( N ( ·)).
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The following result on Caratheodory approximable upper Caratheodory correspon-
dences (specialized to our game-theoretic model) is due to Kucia and Nowak (2000, The-
orem 4.2).

Theorem 1 (Approximable implies Caratheodory approximable):
Suppose assumptions [A-1](1)-(7) hold. If the upper Caratheodory correspondence,
N (· ·), is approximable, then N (· ·) is Caratheodory approximable.

4.1 A Selection Theorem for Approximable Upper Caratheodory

Correspondences

In this section, we will show that if the upper Caratheodory correspondence, N (· ·),
is approximable, then its induced measurable-selection-valued correspondence, (P(·)),
has xed points. We begin with our main selection result from which our xed point
result is easily derived.

Theorem 2 (A selection result for approximable upper Caratheodory correspondences)
Suppose assumptions [A-1](1)-(7) hold and let the correspondence P(· ·) be given by the
following composition

( ) P( ) := { : = ( ) for some N ( )} ,
where the -valued function, (· · ·) is Caratheodory (measurable in and continuous
in ( )), and (· ·) is an upper Caratheodory correspondence. If N (· ·) is
approximable, then there exists L such that

( ) P( ) a.e. [ ].

PROOF: Because N (· ·) is approximable, it is Caratheodory approximable. Thus, for
each , there exists a Caratheodory 1

2 -approximation,

(· ·) : ×L ,

of N (· ·). Consider the sequence of functions,
(·) := (· (· ) ) L . (1)

Observe that for each , (·)(·) is a function from L into L . Moreover, note that for

each the function (·)(·) is - -continuous (i.e., implies that (·)
(·)). This is true because for each implies that for each , as ,

( ) ( ) , and therefore for each ,

( ( ) ) ( ( ) ),

implying that
(· (· ) ) (· (· ) ) L .

By the Schauder-Tychono Fixed Point Theorem (e.g., see Aliprantis-Border, 2006),
for each , there exists L such that

(·) = (· (· ) ). (2)
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Thus, we have for each a set, , of -measure zero such that

( ) = ( ( ) ) for all \ , ( ) = 0 (3)

Call the equation (3), one for each , the Caratheodory equation and call the sequence,
{ } , in L the Caratheodory xed point sequence and let := - so that,
( ) = 0
For each xed point and Caratheodory approximating function pair, ( (· )),

consider the measurable function,

min( ) N (·)[ ( ) + ( ( ) )]. (4)

The graph correspondence,
N (·)

is measurable (by Kucia-Nowak, 2000) and compact-valued, and therefore, by the conti-
nuity of the function

( ) [ ( ) + ( ( ) )]

on L × , there exists for each , a measurable selection of N(·)(·),

( ) L ×

solving the minimization problem (4) state by state (see Himmelberg, Parthasarathy,
Raghavan, and Van Vleck, 1976). Thus, for the measurable function, ( ), we
have

( ) N (·) for all

(i.e., N ( ) )
(5)

and

[ ( ) + ( ( ) )] = min( ) N (·)[ ( ) + ( ( ) )]

so by Theorem 1 above (i.e., the Kucia-Nowak result), we know that

( )| {z }+ ( ( ) )| {z } 1
2 for all .

(6)

Next, let ( ) be a measurable selection from the correspondence

× {( )}

Because the Nash equilibrium correspondence, ( ) N ( ), has a closed graph,

N ( ) for all .

Because , we have by part A of (6) that

L for all ,

and by (3), part B of (6) and the continuity properties of ( · ·) we have that,

( ) = ( ) a.e. [ ].
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where ( ) × {( )} for all . Finally, because

N ( ) for all

we have for any measurable selection, ( (·) ), from

× {( )}
that

( ) = ( ) P( ) for all \ , ( ) = 0

Q.E.D.
An immediate Corollary of Theorem 2 is the following xed point result.

Corollary to Theorem 2 (Fixed points for measurable-selection-valued
correspondences induced from approximable upper Caratheodory correspondences)
Suppose assumptions [A-1] hold and let

( ) P( ) := { : = ( ) for some N ( )} := ( N ( ) )

be an upper Caratheodory correspondence. If N (· ·) is approximable, then there exists
L such that

S (P )

has xed points (i.e., there exists L such that S ( )).

PROOF: By Theorem 2, there exists L such that

( ) P( ) a.e. [ ].

Therefore,
S (P ).

Q.E.D.

5 Conditions Su cient for Approximability
Our objective in this section is to identify conditions su cient to guarantee that the upper
Caratheodory correspondence, N (· ·), has an USCO part,

{N (·) : } U - ,

such that for each , there exists some - -approximable sub-USCO,

( ·) U - [N ( ·)].
Before we state our main results, recall the following facts from metric topology: A

space is provided there is a sequence of spaces, { } , such that +1

for all with = =1 .2 Also recall from Gorniewicz, Granas, and Kryszewski (1991)
that an USCO taking -proximally connected values is called a -mapping. For example,
if ( ·) U - [N (·)] is such that for each L , ( ) is -valued (and hence
-proximally connected valued) then ( ·), is a -mapping.
Our main result on approximability gives conditions on the sub-USCOs, ( ·)

U - [N (·)], su cient to guarantee - -approximability.
2 If is a compact metric space, then is provided there is a sequence of contractible spaces,

{ } , such that
+1

for all with
= =1
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Theorem 3 (Su cient conditions for approximability)
Suppose assumptions [A-1] hold and let ( ) N ( ) be an upper Caratheodory
correspondence. If for each the upper semicontinuous part, N (·) := N ( ·), of N (· ·)
is such that there exists some sub-USCO, ( ·) U - [N (·)], with ( )
taking values in , then for each , ( ·) is - -approximable, and therefore,
N (· ·) is - -approximable.

Proof. Let ( ·) U - [N (·)], and for each , consider the the -Nash sub-USCO,
( ·). By Corollary 5.6 in Gorniewicz, Granas, and Kryszewski (1991), because ( ·) is
a mapping de ned on the ANR (absolute neighborhood retract) space of value functions
L taking nonempty, compact, values in the ANR space ( ), the -Nash sub-USCO,
( ·), is -proximally connected valued, and therefore a mapping. Thus, by Theorem
5.12 in GGK (1991), ( ·) is - -approximable, and therefore, N (· ·) is approximable.
Q.E.D.
If, for example, N (· ·) is such that for each , N ( ·) contains a convex-valued or star-

shape valued sub-USCO, ( ·) - and thus, is -valued - then N (· ·) is approximable.
In addition, if for each , N ( ·) contains a sub-USCO, ( ·), taking arc-like continuum
values, arc-smooth continuum values, or dendritic values, then ( ·) is contractibly-
valued - and thus, is -valued (for related results see Cellina, 1969 and Beer, 1988) -
implying that N (· ·) is approximable.

6 AnApplication: The Existence of StationaryMarkov
Equilibria in Approximable Discounted Stochastic
Games

In this section we will apply our xed point result to establish the existence of stationary
Markov equilibria for the class of approximable discounted stochastic games (here =

). We will take as our starting point the Theorem of Blackwell (1965), extended to
discounted stochastic games, giving necessary and su cient conditions for the existence
of a stationary Markov equilibria in discounted stochastic games with uncountable state
space and compact metric action spaces.

6.1 Primitives of a Discounted Stochastic Game

We need only make a few specializing assumptions and additions to our list of assumptions,
[A-1], specifying the primitives of our xed point problem in order to obtain the primitives
of a discounted stochastic game. Our list of specializing and additional assumptions is as
follows:
First, suppose that is a nite set of players consisting of | | = players and that

each player has state-parameter, ( ) dependent payo function

( (· ·) ) : 1 × · · · × ,

where := [ ] is the potential range player 0 payo s We will equip
with the metric, , given by the absolute value, := | 0| for and 0 in ,
and we will equip the space of payo pro les, := 1 × · · · × , with the sum metric,

:=
X

.

Player 0 parameter space is given by L , the space of all -equivalence classes of
real-valued measurable functions de ned on with values in a.e. [ ] equipped with
a metric compatible with the weak star topology inherited from L and denoted by

8



or by (L L1 ).3 Thus, in our discounted stochastic game example, = . For
each player , the norm on L is given by

k k := sup := inf { : { : | ( )| } = 0} .
Next, equip L := L

1
× · · ·×L , the space of value function pro les, with the the

sum metric,

:=
X
=1

a metric compatible with the relative weak star product topology, , inherited by L
from

L := L × · · · × L| {z }
m-times

Player 0 action choice set with typical element is given by a convex, compact
metrizable subset of a locally convex Hausdor topological vector space . Let be a
metric compatible with the locally convex topology on inherited from , and equip the
product space, :=

Q
, with the sum metric, :=

P
, a metric compatible

with the product topology on inherited from the product space, :=
Q

. Each
element = ( ) of is a pro le of actions players might take and the set , a
compact, convex subset of , is the collection of all such pro les.
Finally, let

( ) := ( 1( 1) ( ))

be the pro le of player payo s given ( ) ×L , where

( ) := 1( )× · · · × ( )

is the feasible action pro le correspondence, and ( ) is player 0 feasible ac-
tion correspondence. Thus for each feasible action pro le, ( ) ( ), player 0

component is such that ( ).
We will assume that (·) is measurable. The correspondence,

(·) : ( ),

de ned on and taking nonempty, closed values in is measurable if

1( ) := { : ( ) 6= } ( )

for open (sometimes called weak or lower measurability). Because is compact,
the following statements are equivalent:
(1) (·) is measurable.
(2) 1( ) for closed.
(3) (·) × . (see Aliprantis and Border 2006).
Because each (·) is measurable,

( ) := 1( )× · · · × ( )

is measurable (i.e., for all 1 × · · · × open, 1( ) ).

3Because the Borel - eld is countably generated, the space of -equivalence classes of -integrable
functions, L1 , is separable. As a consequence, the normed dual of L1 , i.e., L , consisting of value
function -equivalence classes is a compact, convex, and metrizable (e.g., see Diestel-Uhl, 1977 and
Aliprantis-Border, 2006).
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In summary, we have -players, indexed by = 1 2 , and we have
(1) = 1 × · · · × = [ ] is the space of all possible player payo s
pro les.
(2) = 1 × · · · × 1 × · · · × is the space of all possible player action pro les
and

( ) := 1( )× · · · × ( )

is the measurable feasible action pro le correspondence.
(3) L = L

1
× · · · × L L is the space of all possible player valuation function

pro les.
We will assume that each players payo function (· · ·) is speci cally given by

( ) := (1 ) ( ) +

Z
( 0) ( 0| )

where
= ( 1 ) L and = ( 1 ) [0 1] is the -tuple of player discount

rates.
Finally, we will assume that,
(4) (· ·) is player 0 real-valued immediate payo function de ned on × , such that
for all players (i) | ( )| for all ( ) × , (ii) (· ) is measurable
on for all , (iii) ( ·) is continuous and multilinear on for all ;
(5) (·|· ·) is the law of motion such that (i) for all ( ) × the probability
measure (·| ) de ned on ( ) is absolutely continuous with respect to the
probability measure de ned on ( ) (i.e., (·| ) for all ( ) × ), (ii)
for all sets , ( |· ·) is measurable on × , and (iii) the collection of
probability density functions

:= { (·| ) : ( ) × }

of (·| ) with respect to is such that for each state the function

:= ( ) ( 0| ) is continuous in and a ne in

a.e.[ ] in 0.

We will refer to our list of assumptions above [DSG-1] together with our prior list as
[A/DSG-1].

6.2 The Problem and Its Resolution

As a consequence of Blackwell’s Theorem (1965), the search for conditions su cient to
guarantee the existence of a stationary Markov equilibrium for a discounted stochastic
game ( ) with uncountable state space and compact metric action spaces must begin
with the 0 underlying parameterized collection of one-shot games, G( )( ) ×L .
For each ( ) ×L , the underlying one-shot game is given by

( ( ) ( · ))

with player action choices sets, ( ) and player payo functions,

( (· ) ).
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In particular, it follows from Blackwell’s Theorem (1965) that a stationary Markov strat-
egy pro le,

(·) := ( 1(·) (·)) (N )

is a Nash equilibrium of a discounted stochastic game if and only if there exists a pro le
of continuation values (or value functions), := ( 1 ) L such that ( )
P( ) for all , i.e., such that,

(·) := ( 1(·) (·)) (P )

and such that together the pair, ( (·) (·)) (N )× (P ).4 Equivalently, (·) is
a stationary Markov equilibrium if and only if the pair, ( (·) (·)), satisfy the following
system of equations:

for players = 1 2 and for all initial states

( ) = (1 ) ( ( )) +

Z
( 0) ( 0| ( )) ( 0)| {z }

( ( ) )

(7)

and
( ( ) ( ) ) = max ( ) ( ( ) ). (8)

Thus, if for the given strategy pro le, (·), (·), satis es state-by-state for each player
the Bellman equations (7), and if for the given value function pro le, (·), (·), satis es
state-by-state for each player the Nash conditions (8), then together, ( (·) (·)),
satisfy Blackwell’s conditions, and by Blackwell’s Theorem, (·) is a stationary Markov
equilibrium of the discounted stochastic game with underlying state-contingent, collection
of one-shot games, {G( )} .
Note that if ( ) N ( ) is the Nash equilibria correspondence for the one-shot

game, ( ) G( ), and if ( ) P( ) is the induced Nash equilibria payo
correspondence given by

P( ) := { : = ( ) and some N ( )}
then by Blackwell’s Theorem (1965) the discounted stochastic game with underlying col-
lection of one-shot games,

G( )( ) ×L
has a stationary Markov equilibrium if and only if there is a value function pro le, ,
such that

( ) P( ) a.e. [ ],

or equivalently, if and only if there is a value function pro le, , such that

S (P(· )),

where for each , S (P(· )) is the set of -equivalence classes of measurable selections
of the Nash payo correspondence, P( ). Once we have found a xed point,

S (P ) := S (P(· ))

4 (N ) denotes the collection of all (everywhere) measurable selections of the measurable part at ,

N ( ) := N ( ),

of the Nash correspondence,
( ) N ( ) := N ( ).

Similarly, for the notation (P ).
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or equivalently a solution to the Bellman inclusion and in particular, a L such that

( ) P( ) a.e. [ ],

we can easily deduce the existence of an everywhere measurable selection (P(· ))
such that = a.e. [ ] and from this we can easily deduce the existence of the strat-
egy pro le, (·), such that (·) (N (· )) using the Measurable Implicit Function
Theorem (e.g., Himmelberg, 1975, Theorem 7.1). Thus, in order to establish the exis-
tence of a stationary Markov equilibrium for our discounted stochastic game it follows
from Blackwell’s Theorem (1965) that it is both necessary and su cient that there ex-
ists a xed point, , of the corresponding the Nash payo selection correspondence,

S (P(· )) or equivalently, that the Bellman inclusion have a solution. Formally,
we have the following variation on Blackwell’s Theorem (1965):

Theorem 4 (Necessary and su cient conditions for the existence of stationary Markov
equilibria):
Let

:=
©
( ) ( (·) (· ·) ) (·|· ·)ª

be a discounted stochastic game satisfying assumptions [A/DSG-1], with Nash payo
correspondence, P(· ·), for the underlying one-shot game. Then DSG has a stationary
Markov equilibrium if and only if the Nash payo selection correspondence,

S (P(· )),

has a xed point.

Our main result on the existence of stationary Markov equilibria in discounted sto-
chastic games is the following:

Theorem 5 (All approximable discounted stochastic games have stationary Markov
equilibria):
Let

:=
©
( ) ( (·) (· ·) ) (·|· ·)ª

be a discounted stochastic game satisfying assumptions [A/DSG-1], with Nash
correspondence, N (· ·), for the underlying one-shot game. If N (· ·) is approximable,
then DSG has a stationary Markov equilibria.

PROOF: If N (· ·) is approximable, then by the Corollary to Theorem 2 above, the
Nash payo selection correspondence, S (P(·)), has xed points and by Blackwell’s The-
orem, the underlying has stationary Markov equilibria. Q.E.D.
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