Comments by Rafael Repullo on

The Secular Decline of

Bank Balance Sheet Lending

Greg Buchak, Gregor Matvos, Tomasz Piskorski, Amit Seru

Fourth Annual Conference on Financial Stability
London School of Economics, 7 June 2024

Introduction (i)

- Purpose of paper: Understand trends in US financial system

1. Reduction in share of informationally sensitive (bank)
lending in total lending

Introduction (i)

- Purpose of paper: Understand trends in US financial system 1. Reduction in share of informationally sensitive (bank) lending in total lending

Introduction (i)

- Purpose of paper: Understand trends in US financial system

2. Reduction in share of bank deposits in total savings

Introduction (i)

- Purpose of paper: Understand trends in US financial system 2. Reduction in share of bank deposits in total savings

Introduction (i)

- Purpose of paper: Understand trends in US financial system 2. Reduction in share of bank deposits in total savings

Introduction (ii)

- Focus on three main drivers of these trends
\rightarrow Technological improvements in issuance of debt securities
\rightarrow Changes in savers' preferences
\rightarrow Changes in regulation of banking sector
- Structural model to quantify the contribution of these drivers

Strategy for the analysis

- Estimate parameters of the model
\rightarrow In particular: technology, preferences, and regulation
- Construct counterfactual outcomes in 2023
\rightarrow Baseline scenario: keep drivers at 1963 level
\rightarrow Compute the separate effect of each of these drivers

Main results

- Decline in share of informationally sensitive (bank) lending
\rightarrow All three drivers contribute to the decline
\rightarrow Main driver: change in savers' preferences
\rightarrow Second driver: change in intermediation technology
- Decline in share of bank deposits in total savings
\rightarrow Main driver: change is savers' preferences
\rightarrow Partially compensated by changes in regulation (subsidies)

Initial comments

- Complicated structural model
\rightarrow Can we trust the model specification?
\rightarrow Macro developments (e.g. inflation) are missing
\rightarrow How robust are the results?
- Estimation considers the entire 1963-2023 period
\rightarrow Focus on 1980s for changes in lending?
\rightarrow Focus on 1990s for changes in savings?

This discussion

- Review original structural model
\rightarrow Point out two issues
- Sketch simple theoretical model
\rightarrow To better understand effect of the three drivers

Part 1

Structural model

Model setup

- Static (two date $t=0,1$) model with four types of agents
- Savers with given wealth at $t=0$
\rightarrow Invest in savings vehicles that are imperfect substitutes
- Borrowers with given repayment at $t=1$
\rightarrow Borrow using vehicles that are imperfect substitutes
- Banks raise deposits (and equity capital) and invest in loans
- Non-bank financial intermediaries (NBFI): pass-through entities

Savers (i)

- Initial wealth M to be invested at $t=0$ in n savings vehicles
- Utility of savings vehicles

$$
U(Q)=\left(\sum_{j} \alpha_{j}^{\frac{1}{\sigma}} Q_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

\rightarrow where Q_{j} is payment of vehicle j at $t=1$

- Interest rate of vehicle j given by r_{j}
- Note: Omitting subscript s (savers) to simplify notation

Savers (ii)

- Savers' decision problem

$$
\max _{Q} U(Q)=\left(\sum_{j} \alpha_{j}^{\frac{1}{\sigma}} Q_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

\rightarrow subject to

$$
\sum_{j} \frac{1}{1+r_{j}} Q_{j}=M
$$

\rightarrow recall that Q_{j} is payment of vehicle j at $t=1$

- Closed form solution $Q_{d}(r)$ (now with the subscript)

Borrowers (i)

- Debt repayment M due at $t=1$
- Utility of borrowing vehicles

$$
U(Q)=\left(\sum_{j} \beta_{j}^{\frac{1}{\sigma}} Q_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

\rightarrow where Q_{j} is borrowing in vehicle j at $t=0$

- Interest rate of vehicle j given by r_{j}
- Note: Omitting subscript b (borrowers) to simplify notation

Borrowers (ii)

- Borrower's decision problem

$$
\max _{Q} U(Q)=\left(\sum_{j} \beta_{j}^{\frac{1}{\sigma}} Q_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

\rightarrow subject to

$$
\sum_{j}\left(1+r_{j}\right) Q_{j}=M
$$

\rightarrow recall that Q_{j} is borrowing in vehicle j at $t=0$

- Closed form solution $Q_{l}(r)$ (now with the subscript)

Banks (i)

- Balance sheet (omitting equity) at $t=0$

$$
Q_{l}+\frac{1}{1+r_{s}} Q_{s}=\frac{1}{1+r_{d}} Q_{d}
$$

\rightarrow where Q_{s} is investment in securities at the rate r_{s}

Banks (ii)

- Objective function (as written in the paper)

$$
\Pi(Q)=\left(1+r_{l}+\Delta_{l}\right) Q_{l}+Q_{s}-\frac{1+r_{d}+\Delta_{d}}{1+r_{d}} Q_{d}
$$

\rightarrow where Δ_{l} and Δ_{d} are intermediation wedges

Banks (ii)

- Objective function (as written in the paper)

$$
\Pi(Q)=\underbrace{\left(1+r_{l}+\Delta_{l}\right) Q_{l}}_{t=1}+\underbrace{Q_{s}}_{t=1}-\underbrace{\frac{1+r_{d}+\Delta_{d}}{1+r_{d}} Q_{d}}_{t=0}
$$

- Two issues
\rightarrow There is an inconsistency in the timing of terms of $\Pi(Q)$
\rightarrow Where is $\Delta_{l}>0$ coming from (if not from the borrowers)?

Comment (i)

- Unclear whether the timing is a substantive problem
\rightarrow Justification (footnote 11)
"Broadly 'savings' technologies cost $p=\left(1+r_{s}\right)^{-1}$ today
and return 1 tomorrow. 'Borrowing' technologies cost 1
today and return $p=1+r_{l}$ tomorrow. This helps keep
demand functions symmetric across the sectors."
\rightarrow Is this really needed?

Comment (ii)

- Lending wedge Δ_{l} should be negative
\rightarrow Loan provisioning costs
\rightarrow Justification (p. 21): connection with bank capitalization
"A better capitalized bank receives effectively more repayment per loan."
\rightarrow You could introduce this with a (less) negative wedge

Part 2

Simple theoretical model

Model setup

- Static (two date $t=0,1$) model with four types of agents
\rightarrow Savers, borrowers, banks, and NBFIs
- Notation:
\rightarrow Deposits of banks and NBFIs denoted by D_{b} and D_{n}
\rightarrow Deposit rates of banks and NBFIs denoted by r_{b} and r_{n}
\rightarrow Loans of banks and NBFIs denoted by L_{b} and L_{n}
\rightarrow Loan rates of banks and NBFIs denoted by i_{b} and i_{n}

Savers

- Initial wealth M to be invested at $t=0$ in banks and NBFIs
- Bank deposits yield utility (transaction services): $\alpha \ln \left(D_{b}\right)$
- Savers' decision problem

$$
\max \left[\left(1+r_{b}\right) D_{b}+\left(1+r_{n}\right) D_{n}+\alpha \ln \left(D_{b}\right)\right]
$$

subject to $D_{b}+D_{n}=M$

- Solution

$$
D_{b}=\frac{\alpha}{r_{n}-r_{b}} \text { and } D_{n}=M-D_{b}
$$

Borrowers

- Production function $A\left(L_{b}+L_{n}\right)^{\gamma}$
- Bank loans yield utility (monitoring services): $\beta \ln \left(L_{b}\right)$
- Borrowers' decision problem

$$
\max \left[A\left(L_{b}+L_{n}\right)^{\gamma}-\left(1+i_{b}\right) L_{b}-\left(1+i_{n}\right) L_{n}+\beta \ln \left(L_{b}\right)\right]
$$

- Solution

$$
L_{b}=\frac{\beta}{i_{b}-i_{n}} \text { and } L_{b}+L_{n}=\left(\frac{\gamma A}{1+i_{n}}\right)^{\frac{1}{1-\gamma}}
$$

Banks (i)

- Balance sheet

$$
L_{b}+I_{n}=D_{b}
$$

where I_{n} is investment in securities

- Banks' profits

$$
\Pi_{b}=\left(1+i_{b}-c_{l}\right) L_{b}+\left(1+r_{n}\right) I_{n}-\left(1+r_{b}+c_{d}\right) D_{b}
$$

where c_{l} and c_{d} are the costs of lending and deposit taking

Banks (ii)

- Substituting I_{n} from balance sheet into profits yields

$$
\Pi_{b}=\left(i_{b}-c_{l}-r_{n}\right) L_{b}+\left(r_{n}-r_{b}-c_{d}\right) D_{b}
$$

- Assuming a competitive banking system
\rightarrow zero profit conditions

$$
i_{b}=r_{n}+c_{l} \text { and } r_{b}=r_{n}-c_{d}
$$

NBFIs

- Balance sheet

$$
L_{n}=D_{n}+I_{n}
$$

- NBFIs' profits

$$
\Pi_{n}=\left(1+i_{n}-c_{n}\right) L_{n}-\left(1+r_{n}\right)\left(D_{n}+I_{n}\right)=\left(i_{n}-c_{n}-r_{n}\right) L_{n}
$$

where c_{n} are the costs of securitization

- Assuming a competitive NBFI system
\rightarrow zero profit condition

$$
i_{n}=r_{n}+c_{n}
$$

Balance sheets

Equilibrium rates

- Equilibrium condition

$$
L_{b}+L_{n}=\left(\frac{\gamma A}{1+i_{n}}\right)^{\frac{1}{1-\gamma}}=D_{b}+D_{n}=M
$$

\rightarrow Equilibrium NBFI loan rate

$$
1+i_{n}^{*}=\frac{\gamma A}{M^{1-\gamma}}
$$

\rightarrow Other equilibrium rates
NBFI deposit rate: $r_{n}^{*}=i_{n}^{*}-c_{n}$
Bank loan rate: $\quad i_{b}^{*}=r_{n}^{*}+c_{l}=i_{n}^{*}-c_{n}+c_{l}$
Bank deposit rate: $r_{b}^{*}=r_{n}^{*}-c_{d}$

Equilibrium quantities

- Bank deposits

$$
D_{b}^{*}=\frac{\alpha}{r_{n}^{*}-r_{b}^{*}}=\frac{\alpha}{c_{d}}
$$

- Bank loans

$$
L_{b}^{*}=\frac{\beta}{i_{b}^{*}-i_{n}^{*}}=\frac{\beta}{c_{l}-c_{n}}
$$

- NBFI deposits $D_{n}^{*}=M-D_{b}^{*}$
- NBFI loans $\quad L_{n}^{*}=M-L_{b}^{*}$

Comparative statics (i)

- Main drivers of financial sector trends
\rightarrow Improvements in issuance of debt securities: $c_{n} \downarrow$
\rightarrow Changes in savers' preferences: $\alpha \downarrow$
\rightarrow Changes in regulation of banking sector: $c_{l} \uparrow$

Comparative statics (ii)

- Since

$$
D_{b}^{*}=\frac{\alpha}{r_{n}^{*}-r_{b}^{*}}=\frac{\alpha}{c_{d}}
$$

\rightarrow reduction in α leads to fall in bank deposits
\rightarrow this could be compensated by reduction in $\operatorname{costs} c_{d}$

- Since

$$
L_{b}^{*}=\frac{\beta}{i_{b}^{*}-i_{n}^{*}}=\frac{\beta}{c_{l}-c_{n}}
$$

\rightarrow reduction in c_{n} leads to fall in bank loans
\rightarrow this would be reinforced by increase in c_{l}

Comparative statics (iii)

- Decline in share of bank deposits in total savings
\rightarrow Depends on the ratio α / c_{d}
\rightarrow How can we separate the effects of α and c_{d} ?
- Decline in share of informationally sensitive (bank) lending
\rightarrow Depends on the ratio $\beta /\left(c_{l}-c_{n}\right)$
\rightarrow How could we separate the effects of c_{l} and c_{n} ?

Concluding remarks

Concluding remarks (i)

- Paper addresses key issue from a novel perspective \rightarrow Understanding trends in US financial system by building a structural model
\rightarrow Importantly, model incorporates a NBFI sector
\rightarrow Approach is relevant for other jurisdictions (except for the peculiar US government sponsored sector)

Concluding remarks (ii)

- Model allows for counterfactual analysis
\rightarrow Including the effects through NBFIs
\rightarrow Interesting policy implications
\rightarrow Small effects of bank regulation on aggregate lending
\rightarrow Because of reallocation to NBFIs

Concluding remarks (iii)

- There is scope for more research in this area
- Two possible directions
\rightarrow Simplify model to better understand the mechanisms
\rightarrow Complicate model to introduce dynamic considerations
- Both directions should be pursued

