Branching Out Inequality: The Impact of Credit Equality Policies

Jacelly Cespedes University of Minnesota Erica Jiang USC Marshall Carlos Parra PUC-Chile Jinyuan Zhang UCLA

- ► Credit access is crucial for economic development but unequal across regions
 - e.g., Chodorow-Reich (2014), Beck et al. (2010), Chen et al. (2017)
- A major intervention in many countries to promote equal credit access:
 regulating private institutions to supply credit to poorer areas
 - e.g., the Community Reinvestment Act (CRA) in the US, India's Priority Sector Lending, and South Africa's National Credit Act

- The CRA since 1977 mandates banks to lend to low-income neighborhoods in areas of their operation
- ► Policy reform following the rise of non-banks, technological advancement, etc

What are the economic consequences of location-based fair lending regulations?

Geographic Inequality in Credit Availability in the US

Small Business Lending Gap: Top 20% v.s. Bottom 20% County

- The small business lending gap b/w rich and poor counties was widened
- Existing studies focus on within-region analysis and do not explain this trend

The CRA widens cross-region disparities by affecting banks' branching decisions

 In rich areas, banks subsidize underserved neighborhoods under the CRA

The CRA widens cross-region disparities by affecting banks' branching decisions

- In rich areas, banks subsidize underserved neighborhoods under the CRA
- ► In poor areas, banks close branches to sidestep the rule → information-intensive lending declines

This Paper

- ► Model:
 - illustrate the trade-off between compliance and exit
 - motivate a measure of "cost of CRA violation" (δ)
- \blacktriangleright Estimate δ for individual banks using a RD design
- Reduced-form analysis: Compare branching and lending decisions of banks w/ different δ following local expansion of non-bank lenders
 - more competition from non-banks increases the cost of compliance
 - banks w/ higher cost of CRA violation are the first to exit
- Quantification:
 - CRA-induced branch closure cutoff
 - Net effect of the CRA
 - Consequences as non-banks keep expanding

- Banks with higher cost of CRA violation are more likely to exit from an area as non-bank lenders expand locally
 - Branch closures and small business lending reduction
- Adverse effects concentrated in poorer areas with larger minority population
- ▶ Net effect of the CRA on lending shifted from positive 30% to negative 3.4%
- Widened cross-region disparities in lending, banking access, and real business establishments

Background: CRA Rules

CRA Rules

Sufficient lending and investment in CRA-eligible census tracts within a banking institution's CRA assessment areas

- Assessment area: MSAs (or counties if outside an MSA) in which the bank has its branches and deposit-taking ATMs
- CRA-eligible LMI regions: census tracts with median-family-income (MFI) lower than 80% of assessment area MFI

Orange County (MFI: \$74344)

- Banks receive CRA ratings: Outstanding, Satisfactory, Needs to Improve, and Substantial Non-compliance
- Why do banks care about CRA ratings?
 - Affect banks' ability to participate in M&As or to open new branches
 - Subject to more frequent CRA exams if failing to comply
 - Reputation concern and hassles from community groups

Model

- Understand how banks respond to CRA
- Illustrate the trade-off of CRA and its distributional effect
- Motivate empirical measure, design, and quantification

$$\max_{L_1,L_2,b} \quad \pi(L_1,L_2,b) = \underbrace{r_1(L_1,b)L_1 + r_2(L_2,b)L_2}_{\text{Lending Profit}} - \underbrace{\delta(\bar{L}-L_1) \times \mathbb{1}(b>0)}_{\text{Regulatory Cost}}$$

► Downward-sloping lending demand curve for each sub-region *i* ∈ {1,2}

$$r_i(L_i, b) = \underbrace{\alpha + \alpha_i}_{\text{Demand}} - \underbrace{\beta}_{\text{Elasticity}} L_i + \underbrace{\gamma}_{\text{Branch preference}} b$$

- No CRA benchmark: $\Delta \pi' = \text{Benefit of Branch} > 0 \rightarrow b = 1$
- w/ CRA: b = 0 when Regulatory Cost is so high that $\Delta \pi < 0$

(Net) Effects of the CRA

- Cross-subsidization between LMI and non-LMI within rich areas (high $\frac{1}{\beta}$) \rightarrow more lending in LMI within rich areas
- CRA-induced branch closures in poor areas (low $\frac{1}{\beta}$)
 - \rightarrow less lending in the poorest areas

(Net) Effects of the CRA

- Higher shadow cost of CRA violation, i.e., higher δ :
 - More lending to LMI within rich areas
 - ... but, a larger set of poor areas suffer from CRA-induced branch closure

Empirical Analysis

- Competition from non-bank lenders increases the lending gap
- Compare branching decisions of banks w/ different δ following local expansion of non-banks

$$\Delta Y_{b,c,t} \sim \Delta \mathsf{NonBank}_{c,t} imes \hat{\delta}_{b} + \mu_{b,t} +
u_{c,t}$$

Estimating δ of banks: Regression Discontinuity Design

Model:
$$(L_1^*-L_2^*)|_{b=1}=rac{lpha_1-lpha_2+\delta}{2eta}$$
 .

- Census tracts with MFI just around the 80% threshold have $\alpha_1 = \alpha_2$
- ► *L*₁^{*}: lending to tracts [65%, 80%)
- ► *L*₂^{*}: lending to tracts [80%, 95%]

$$\Rightarrow (L_1^* - L_2^*)|_{b=1} = \frac{\delta}{2\beta}$$

Orange County (MFI: \$74344)

95% - 120% >=120% Estimate $\hat{\delta}_b$ for each bank *b* across MSAs (counties if outside an MSA)

 $\log(\text{Loans})_{b,i,t} = \hat{\delta}_b \mathbb{1}(\text{LMI}_{i,t}) + \kappa_1(\text{MFI}_{i,t} - 80\%) + \kappa_2 \mathbb{1}(\text{LMI}_{i,t}) \times (\text{MFI}_{i,t} - 80\%) + \gamma_{m,t}$

- Restrict to MSAs/counties where bank b has branches
- Pre-crisis data: 2005-2008

Average Shadow Cost of CRA Voliation (δ)

- Average δ: Banks' mortgage supply is 2% higher in neighborhoods with median income right below 80% of the assessment area's median income
- High $\hat{\delta_b}$: banks with $\hat{\delta_b}$ above median Mortgage Price Lending Standard

What Drives $\hat{\delta}_b$ Variations across Banks

High $\hat{\delta}$ banks

- higher CRA rating
- higher need for structural changes
- not correlated with bank profitability or risk taking
- do not appear to have different technology (branch intensity), customer base, or product market segments

Rise of Non-Bank Lenders in Mortgage Lending

$$\Delta Y_{b,c,t} \sim \Delta \mathsf{NonBank}_{c,t} \times \hat{\delta}_b + \mu_{b,t} + \nu_{c,t}$$

- Expansion of non-bank lenders starting in 2011
 - technological advancement
 - regulatory arbitrage
- ► Shock to local demand for bank credit → Lower profitability

Local Exposure to the Rise of Non-Bank Lenders: Bartik Shock

• **Concern** of using local non-bank lending growth:

bank exits \rightarrow expansion of non-bank lenders

Solution: Bartik shock

 $\Delta NonBank_{m,t} = NB Share_{m,0508} \times Leave-one-out National NB Growth$

Validity: NB Share_{m,0508} is correlated with local population but uncorrelated with age, education level, poverty level, race share, per capita income, housing price and CRA-exposure etc.

Empirical Analysis

Branch Closure and Lending

	Δ Branch Presence	$\Delta \log(1+\# Branch)$
Δ NonBank $ imes$ High $\hat{\delta}_b$	-0.134***	-0.077**
	(0.03)	(0.03)
$Bank\timesYearFE$	\checkmark	\checkmark
$\text{County} \times \text{Year FE}$	\checkmark	\checkmark

- High δ banks are more likely to close branches
- ▶ 30% increase in non-bank market share
 - ightarrow 3.9% higher likelihood of complete branch-withdrawal
 - \rightarrow 2.2% more branch closure

	log(Mortgage)	log(SML)
Δ NonBank $ imes$ High $\hat{\zeta}_{b}$	-0.661***	-0.569***
	(0.10)	(0.10)
County \times Year FE	\checkmark	\checkmark
$Bank \times FE$	\checkmark	\checkmark

▶ 30% increase in non-bank market share

 \rightarrow 14.5% \downarrow mortgage lending & 13.0% \downarrow small business lending

► SML reduction at market level Market-Level Results

 \rightarrow Market adjustments fail to pick up bank-level lending slack

Adverse Effects Concentrate in Economically Disadvantaged Areas

- The adverse effects of the CRA concentrate in low-income areas with more minorities
- Similar patterns across various branch- and lending-related outcomes Other Outcomes

Economically disadvantaged counties are the marginal areas shifting from benefiting to suffering from the CRA as non-bank lenders expand

Net Effect on Bank Lending

Quantifying the Net Effect

Should we be concerned about the adverse impact of the CRA?

Put empirical estimates back to our conceptual framework

Estimation in Two Steps

Step 1: lending as a function of local log(PCI) and bank branch presence

Lending in Non-LMI =
$$\frac{\alpha + \alpha_1}{2} log(PCI) + \frac{\gamma}{2}$$
Branch × $log(PCI)$ + Branch
Lending in LMI = $\frac{\alpha + \alpha_2}{2} Log(PCI) + \frac{\gamma + \delta}{2}$ Branch × $log(PCI)$ + Branch

Step 2: Estimate CRA-induced lending cut

 $\Delta \log(\mathsf{SBL} + \mathsf{Mortgage})_{b,c,t} = \kappa \big(\log \mathsf{PCI}_{c,2010} \times \overline{\Delta} \mathsf{Branch} \, \mathsf{Presence}_{b,c,t} \big) + \nu_{b,t} + \mu_{c,t}$

$$\Rightarrow (rac{1}{eta})^* = rac{2(\kappa^{ ext{Imi}}+\kappa^{ ext{non-Imi}})}{2\gamma+\delta}$$

Quantification: Net Effect and Decomposition

- $\blacktriangleright~$ 44% counties: 76% \downarrow in LMI and 33% \downarrow in non-LMI under the CRA
- $\blacktriangleright~56\%$ counties: 104% \uparrow in LMI under the CRA
- ▶ Net effect: 3.4% reduction in overall lending

Quantification: Rise of non-bank lenders

non-bank lenders: 25% in 2011 \rightarrow 55% in 2017

- ▶ Net effect before the rise of non-bank lenders: 29.5%
- ► 43% counties shift from benefiting to suffering from the CRA

Widened Geographic Disparities

A more concerning unintended consequence:

widening cross-region disparities in credit access

• Estimating how CRA-binding an MSA is, η_m , using a similar RD design

 $log(Loans)_{i,t} = \eta_m \mathbb{1}(LMI_{i,t}) + \beta_{b1}(MFI_{i,t} - 80\%) + \beta_{b2}\mathbb{1}(LMI_{i,t}) \times (MFI_{i,t} - 80\%) + \nu_t + \epsilon_{i,t}$

- ► CRA Binding regions: above-median $\hat{\eta}_m$

CRA rules are more binding in less economically developed areas

	∆log(1+Branch) (1)	∆Bank Desert (2)	∆Financial Inclusion (3)	∆log(Small Business Loans) (4)	∆log(SBA 7(a) Revolving Credit) (5)	∆log Business Estab. (6)
Δ NonBank ×CRA Binding Area	-0.075**	0.064*	0.381**	-0.211*	-0.715**	-0.035**
Ū.	(0.04)	(0.04)	(0.15)	(0.11)	(0.33)	(0.02)
State FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 Widened gaps in economic outcomes between CRA binding and non-binding areas

Conclusion

Two types of policies to promote equal credit access

- ▶ Public Scheme: e.g., direct transfers
- Private Scheme: regulating banks

Importance of considering supply-side adjustment for assessing such policies

- The CRA improves credit equality in the rich areas at the cost of the poorer areas losing banking access
- The expansion of non-bank lenders compresses the set of areas benefiting from the CRA, further widening cross-region disparities in credit access

Appendix

Risk-Adjusted Return Is CRA Compliance Costly?

Risk-adjusted prices in the under-served census tracts are 2.2bps lower.

	[-15,+15]				
	(1)	(2)	(3)	(4)	
	Balloon	Full Doc	FICO	LIV	
⊥ (LMI)	0.001	-0.004	-1.098	0.105	
	(0.00)	(0.00)	(0.83)	(0.12)	
MFI-80	-0.000	-0.001***	0.387***	-0.043***	
	(0.00)	(0.00)	(0.05)	(0.01)	
1 (LMI)×(MFI-80)	-0.000**	-0.000	0.088	-0.008	
	(0.00)	(0.00)	(0.11)	(0.02)	
Assessment Area $\times \rm Year \ FE$	\checkmark	\checkmark	\checkmark	\checkmark	

Back to Main

	∆log(Orig. &Pur.) (1)	∆log(Orig.) (2)	∆log(Pur.) (3)	∆Rejection Rate (4)	∆Withdrawal Rate (5)	∆Origination Rate (6)
SBank Shock $ imes$ High	$\hat{\delta}_b$ -0.661***	-1.478***	-0.746***	0.034*	0.042***	-0.054**
	(0.10)	(0.13)	(0.11)	(0.02)	(0.01)	(0.02)
Bank×Year FE	√	√	√	√	√	√
County×Year FE	√	√	√	√	√	√
Adjusted R^2	0.270	0.216	0.638	0.086	0.092	0.089
Observations	210,048	210,048	210,048	179,926	162,914	179,926

Back to Main

Effect on Local Small Business Lending

	∆log(Small	∆log(Small Business Lending) Total		Business Lending) ue <1 Million
	(1)	(2)	(3)	(4)
SBank Shock \times High $\sum_{b} v$	$v_b \hat{\delta}_b$ -0.551***	-0.262*	-1.172***	-0.444**
	(0.21)	(0.15)	(0.33)	(0.22)
SBank Shock	2.954***	-0.891	4.528***	-22.481***
	(0.35)	(3.85)	(0.47)	(6.39)
County FE	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Dynamic Controls		\checkmark		\checkmark
Adjusted R ²	0.764	0.802	0.796	0.826
Observations	17,880	12,765	17,765	12,737

	$\Delta \log(1+Branch)$	∆Bank Desert	∆Financial Inclusion	∆log(Small Business Loans)	∆log(SBA 7(a) Revolving Credit)	∆log Business Estab.
	(1)	(2)	(3)	(4)	(5)	(6)
SBank Shock ×CRA Binding Area	-0.075**	0.064*	0.381**	-0.211*	-0.715**	-0.035**
	(0.04)	(0.04)	(0.15)	(0.11)	(0.33)	(0.02)
State FE Year FE Controls	\checkmark \checkmark	\checkmark	\checkmark \checkmark	\checkmark \checkmark	\checkmark \checkmark	\checkmark \checkmark

 Widened gaps in economic outcomes between CRA binding and non-binding areas

