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Abstract

We develop a credit market competition model that distinguishes between the informa-
tion span (breadth) and signal precision (quality) of data, capturing the emerging trend in
fintech/non-bank lending where traditionally subjective (“soft”) information becomes more ob-
jective and concrete (“hard”). In a model with multi-dimensional fundamentals, two banks
equipped with similar data processing systems possess hard signals about the borrower’s hard
fundamentals, and the specialized bank, who further interacts with the borrower, can also as-
sess the borrower’s soft fundamentals. Increasing the span of the hard information hardens
soft information, enabling the data processing systems of both lenders to evaluate some of the
borrower’s soft fundamentals. We show that hardening soft information levels the playing field
for the non-specialized bank by reducing its winner’s curse. In contrast, increasing the precision
or correlation of hard signals often strengthens the informational advantage of the specialized
bank.
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1 Introduction

As a crucial intermediary sector in modern economies, commercial banks serve as the main con-
duit between savers and credit-worthy borrowers, leveraging a broad spectrum of information. The
diverse array of lending-related information includes financial data on customers, collateral evalu-
ations, and market and economic trends, not to mention state-of-the-art data analytics. Improve-
ments and changes in information technology affect the quality and type of information available to
banks. While there have been many developments that have improved the quality of information
available to banks, the trend in big data technology that transforms qualitative or subjective as-
sessments into quantifiable and objective metrics, known as “hardening soft information” (Liberti
and Petersen, 2019; Hardik, 2023) is a fairly recent phenomenon. In this paper, we are interested in
how the hardening of soft information affects the equilibrium credit market and what differentiates
this trend from previous technological innovations.

The farming industry provides an illustrative example of how technology can transform tradi-
tional lending practices. In the past, farm loans required extensive in-person visits from specialized
loan officers, who leveraged their expertise to evaluate the borrower’s abilities and farm infrastruc-
ture quality. This hands-on approach was necessary to evaluate these “soft” fundamentals, as the
officers needed to directly observe factors like crop rotation techniques, pest management strate-
gies, and barn conditions to accurately assess loan risks. Today, satellite imaging and AI-enabled
data analysis allow lenders to gather some of these insights remotely via computerized “hard” data.
While on-site assessments still provide important insight, new technologies have expanded access
to farm data, demonstrating how technology can expand the information span of “hard signals”
without entirely disrupting specialized but “soft” human expertise.

As the example above highlights, the remarkable recent and ongoing technological advance-
ments have the potential to alter the information available to participants in the credit market
and significantly impact the industrial landscape of the banking sector. For instance, as shown in
Blickle, Parlatore, and Saunders (2023), many lenders specialize in certain industries and companies
by providing customized financial services and pricing, often by diligently collecting and analyzing
information about individual firms/industries. Nevertheless, the prevailing literature (Broecker,
1990; Marquez, 2002; He, Huang, and Zhou, 2023) on information-based credit market competi-
tion predominantly focuses on a signal structure that covers a one-dimensional fundamental with
binary realizations, overlooking the nuances of the aforementioned intricate economics potentially
embedded in the rich categories of information.

We incorporate a novel information structure into an otherwise conventional credit market
competition model, offering an economic framework to analyze the welfare implications of the
evolving landscape in information technology and competition among banks. In the model, the
borrower quality depends on multiple fundamental states, which broadly belong to two categories—

1



“hard” states and “soft” states as distinguished by the type of information technology capable of
assessing these states. Before making lending decisions, lenders can access private signals about
these two states. We refer to a signal that reflects the borrower’s hard states as a “hard-information-
based signal” or simply a “hard signal,” and likewise, a signal that reflects the borrower’s soft states
as a “soft-information-based signal” or a “soft signal.” Crucially, hard states might overlap with soft
states, so hard and soft signals might be correlated. This correlation, and its potential implications
on credit market competition, are the main innovation relative to the model in the companion
paper Blickle, He, Huang, and Parlatore (2024).

Our framework highlights the difference between the breadth (information span) and quality
(signal precision) of data. The overlap between soft and hard fundamental states allow us to define
the “information span” (of a hard signal) naturally. When hard states cover more fundamental
states that are critical to the borrower’s quality, the information span of the hard signal expands,
and this expansion captures the core idea of “hardening soft information” in the context of credit
market competition. In contrast, the precision of data is about enhancing the accuracy of the hard
signals in assessing the same characteristics. While improvements in both the span and precision
of information are typically associated with technological advances, we show that they have vastly
different impacts on credit market outcomes.

In our model of credit market competition, as we outline in Section 2, a specialized bank
competes with a non-specialized bank. Each lender has a private hard signal about the hard
fundamental states that stems from data processing. Additionally, the specialized lender has access
to a soft signal about the borrower’s soft states. We assume that the hard signal is binary and
decisive in that each lender makes an offer only if it receives a positive realization of it. The soft
signal—which differentiates our paper from existing models such as (Broecker, 1990) and (Marquez,
2002)—is continuous and guides the fine-tuned interest rate offering of the specialized bank. Besides
analytical convenience, this loan-making rule of the specialized bank matches well with the observed
lending practices. Essentially, in our model, the specialized bank acquires two signals, one being
“principal” while the other being “supplementary.” The former determines whether to lend and the
latter affects the detailed pricing terms.1

Section 3 fully characterizes the competitive credit market equilibrium with specialized lending
in closed form. As in Blickle, He, Huang, and Parlatore (2024), our model has a unique equilibrium,
which can fall into two distinct categories depending on whether the non-specialized bank makes
zero profits. In the “zero-weak” equilibrium, the winner’s curse faced by the non-specialized “weak”
bank causes it to randomly withdraw from competition upon receiving a positive hard signal and
earn zero profits. In the ”positive-weak” equilibrium, the winner’s curse is less severe so the non-
specialized weak bank always participates in the loan market upon a positive hard signal and earns

1Alternatively, the principal signal represents the result of a credit screening test, while the supplementary signal
serves the role of internal ratings (of borrowers who are qualified for credit).
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positive profits.
Our main analysis, in Section 4, examines how the span of hard information affects the equilib-

rium in the credit market. In our model, the information technology available to the lenders affects
their screening technology and their beliefs about the information of the other lender (through
strategic considerations), which determines the severity of the winner’s curse. In general, an ex-
pansion in the information span of the hard signal reduces Type II errors from hard-information-
based screening for both specialized and non-specialized lenders. This economic force, however, is
stronger for the latter, because this expansion enables the non-specialized lender to learn about its
specialized opponent’s soft signal. Put differently, a greater span of hard information increases the
overlap between hard and soft states, thereby leveling the playing field by reducing the winner’s
curse faced by the non-specialized bank due to the specialized opponent’s soft signal. When the
information span is sufficiently large, the non-specialized lender starts to make positive profits.

As one of the main results of the paper, we compare an increase in the span of hard information
with two other types of informational technology advancement: an increase in the signal precision
of each hard signal, and an increase in the correlation between the two hard signals. We show that
while an increase in the span of hard information levels the playing field for the non-specialized
bank, an increase in the precision of hard information or the correlation of hard private signals
tends to amplify the informational edge of the specialized bank, especially when the hard signal is
sufficiently informative.

Why is it important to distinguish among these different aspects of information technologies?
We stress that the significant advance in information technology benefits both types of lenders
equally; specialized and established banks can adopt these technologies just as effectively as non-
specialized banks and new fintech entrants. However, the fast-growing empirical literature on
fintechs (see, e.g. Berg, Fuster, and Puri, 2022) seem to suggest that the new technology has helped
relatively weaker (fintech) lenders to catch up, intensifying the credit market competition. Building
a model with asymmetric lenders but symmetric technology improvement, our theory clarifies that
it is enlarging the information span, not the mere improvement of “signal precision,” that can
deliver the desired empirical pattern in a robust way. As elucidated in our opening motivating
example of “loans to the farming industry,” big data technology empowers non-specialized lenders
to utilize “hardened soft information.” As we show, an improved signal precision allows both lenders
to have a more precise evaluation of borrower quality, while enlarging the information span provides
the non-specialized lender direct insights into its opponent’s pricing strategy: the former tends to
reinforce the position of specialized lender, while the latter serves the role of “leveling the playing
field.”

It is also worth highlighting that these distinctions emerge from our examination of credit market
competition with specialized lending. Our model with asymmetric lenders with different types of
information is a practically relevant setting; as demonstrated by Blickle, He, Huang, and Parlatore
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(2024), banks with asymmetrical private information are needed to match the empirical patterns in
loan pricing. From this perspective, this paper offers an analytical framework to derive potentially
distinct implications of different aspects of information technology on loan pricing, which provide
useful guidance for future empirical research.

The process of “hardening soft information,” which expands the span of hard information,
has important implications for the equilibrium credit allocation and the resulting welfare. The
behavior of the loan approval and non-performing rates of the specialized bank is governed by
the reduction in Type II errors, which causes them to increase and decrease, respectively. As a
result, we find that total welfare, measured as the expected surplus from projects that are funded,
is always increasing in the span of hard information. However, the interest rates charged by the
lenders depend on whether the reduction in the winner’s curse or the improvement in the screening
technology dominates. Interestingly, we show that given a lower signal precision, Bank A’s profits
could also increase in information span η in the parameter range of positive-weak equilibrium. This
highlights the feature that we directly model technology improvement, so both the specialized and
nonspecialized lenders enjoy the benefit from the same technology improvement.

Throughout the paper, we make one important modeling choice of hard information technology,
which takes the entire binary hard fundamental as input to generate a binary signal. As a model
extension we consider an alternative way of modeling the hardening of soft information by introduc-
ing a third signal on hardened soft fundamentals. We analytically illustrate the mapping between
these two different information technologies and show that this alternative modeling delivers similar
economic implications to our baseline modeling.

Literature Review

Lending market competition and common-value auctions. Our paper is built on Broecker (1990)
which studies lending market competition with screening tests with symmetric lenders (i.e., with
the same screening abilities). Hauswald and Marquez (2003) study the competition between an
inside bank that can conduct credit screenings and an outside bank without such access. He,
Huang, and Zhou (2023) consider competition between asymmetric lenders with different screening
abilities under open banking when borrowers control access to data. Asymmetric credit market
competition can also naturally arise from the bank-customer relationship, as a bank knows its
existing customers better than a new competitor does.2 In these models, for analytical tractability
it is often assumed that private screening yields a binary signal and lenders participate in bidding
only following the positive signal realization.

Building on the framework established in our companion paper Blickle, He, Huang, and Parla-
tore (2024), our paper considers competition between asymmetric lenders with multiple information

2This idea was explored by a two-period model in Sharpe (1990) where asymmetric competition arises in the
second period (with the corrected analysis of a mixed-strategy equilibrium offered by Von Thadden (2004)). A
similar analysis is present in Rajan (1992).
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sources. In both articles a non-specialized lender has access to a private “hard” signal about the
borrower’s credit quality, while the specialized lender receives not only an independent private
“hard” signal but also a “soft” signal, both of which are informative about the borrower’s credit
quality. The distinction is that in Blickle, He, Huang, and Parlatore (2024), hard (soft) signals
reflect independent borrower characteristics that drive the loan quality. This paper, however, allows
these underlying states to overlap with each other, resulting in correlated hard and soft signals.
The correlation and its implications of “hardening soft information” on credit market competition
are the main innovation relative to Blickle, He, Huang, and Parlatore (2024).

Fundamentally speaking, credit market competition is an application of common-value auc-
tions, and notably, the auction literature typically allows for general signal distributions (other
than the binary signal in the aforementioned papers).3 For instance, Riordan (1993) extends the
N -symmetric-lender model in Broecker (1990) to a setting with continuous private signals. In terms
of modeling, our framework can be viewed as a combination of Broecker (1990) (hard information)
and Milgrom and Weber (1982) (soft information). It is worth highlighting that lenders are each
privately informed with hard information; this hence breaks the Blackwell ordering of the informa-
tion of two lenders in Milgrom and Weber (1982),4 resulting in a problem that is considerably more
challenging. What is more, the economics revealed by a setting with multi-dimensional information
can be fundamentally different, as highlighted by the distinction between information precision and
information span discussed in Section 2.2.

In a closely related paper, Karapetyan and Stacescu (2014) argue that sharing borrower’s “hard”
information (say default history) in fact increases the incumbent bank’s incentive to further acquire
“soft” information regarding borrower’s quality.5 Although their model also involves the stronger
bank having more than one private signal, one important difference is that in Karapetyan and
Stacescu (2014) there is always a strict Blackwell ordering of information between two lenders,
simply because the hard information becomes public after sharing. In contrast, conditionally in-
dependent hard signals in our model allow for the possibility of having a profitable weaker lender,
yielding much richer empirical predictions regarding welfare analysis.

Specialization in lending. There is a growing literature documenting specialization in bank lending;
the early work includes Acharya, Hasan, and Saunders (2006). Paravisini, Rappoport, and Schnabl
(2023) shows that Peruvian banks specialize their lending across export markets benefiting bor-

3The early papers on this topic include Milgrom and Weber (1982) and Engelbrecht-Wiggans, Milgrom, and Weber
(1983), and later papers such as Hausch (1987); Kagel and Levin (1999) explore information structures where each
bidder has some private information, which is the information structure adopted in Broecker (1990). For an early
empirical paper on asymmetric bidders, see Hendricks and Porter (1988).

4More precisely, one bidder knows strictly more than the other bidder. In this setting, one can show that the
under-informed bidder always makes zero profit; see also Engelbrecht-Wiggans, Milgrom, and Weber (1983).

5In that paper, the information that banks are sharing, which is hard information, is not that soft information that
banks acquire at a cost. If sharing leads incumbent banks to lose their edge, they should have a stronger incentive to
acquire soft information (which cannot be shared).
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rowers who obtain credit from their specialized banks. Based on data for US stress-tested banks,
Blickle, Parlatore, and Saunders (2023) documents that specialization is linked with lower interest
rates and better performance in the industry of specialization, pointing to a strong link between
specialization in lending and informational advantages. Our paper contributes to this literature by
providing a framework that can rationalize these patterns allowing us to understand the economic
mechanisms behind them and their implications more deeply.

The nature of soft/hard information in bank lending. The existing literature on soft and hard
information (e.g., Stein, 2002; Liberti and Petersen, 2019) emphasizes that the latter is easily
verifiable and hence transferable (within an organization); for instance, Bertomeu and Marinovic
(2016) and Corrao (2023) model “soft” information via a cheap talk game a la Crawford and
Sobel (1982) where the messages are soft and carry no intrinsic meaning themselves.6 Since we do
not explicitly model communications within or across banks, whether the information is verifiable
is irrelevant to the core economics that our model aims to capture. However, complementing the
traditional way of modeling hard/soft information which focuses on communication (e.g., Bertomeu
and Marinovic, 2016; Corrao, 2023), our paper highlights the novel concept of “information span”
that is necessary to understand the recent phenomenon where certain soft information becomes
hardened. Furthermore, similar to Karapetyan and Stacescu (2014) where hard information can be
shared, as hard information is transferable and can be analyzed by anyone, once soft information
gets hardened into verifiable data, it also becomes accessible to non-specialists. This levels the
playing field for non-specialized lenders, a development often conducive to welfare improvement in
our analysis.

Fintech. Our paper connects to the growing literature on fintech disruption.7 Empirical studies
document the use of alternative data in fintech lending, which is consistent with our emphasis on
the increasing span of hard information.8 In particular, Huang, Zhang, Li, Qiu, Sun, and Wang
(2020) shows that unconventional data from the Alibaba platform, such as business transactions,
customer ratings, and consumption patterns improve credit assessment. Our paper emphasizes that
the recent development of cashless payments increases the scope of firms that could be assessed by
hard information (Ghosh, Vallee, and Zeng, 2022), and perhaps more importantly, the combination
of payments and big data technology enlarges the span of hard information.

6For related empirical studies, see Liberti and Mian (2009), Paravisini and Schoar (2016). Recently, based on
Harte Hanks data, He, Jiang, Xu, and Yin (2023) shows a significant rise in IT investment within the U.S. banking
sector over the past decade, particularly among large banks. They also establish a causal link between communication
IT investments and banks’ capacity to generate and transmit soft information, which motivates our modeling of the
soft signal as the outcome of interactions with borrowers.

7See Berg, Fuster, and Puri (2022); Vives (2019), e.g. for a review of bank-fintech competition.
8Examples of alternative data include phone device and spelling (Berg, Burg, Gombović, and Puri, 2020), mo-

bile phone logs (Agarwal, Alok, Ghosh, and Gupta, 2020). Along the line of our model with different dimensions
of information, Huang (2023) develops a theoretical framework wherein the importance of information concerning
underlying qualities varies between collateral-backed bank lending and revenue-based fintech lending such as Square.
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2 Model Setup

We consider a credit market competition model with two dates and one good. There are two ex-ante
symmetric lenders (banks), indexed by j ∈ {A, B} and one borrower firm; everyone is risk neutral.

2.1 The Setting

Project. At t = 0, the firm needs to borrow one dollar to invest in a (fixed-scale) risky project
that pays a random cash flow y at t = 1. The cash flow realization y depends on the project’s
quality denoted by θ ∈ {0, 1}. For simplicity, we assume that

y =

1 + r when θ = 1

0 when θ = 0,
(1)

where r > 0 is exogenously given so only the good project pays off. We will later refer to r as
the interest rate cap or the return of a good project. The project’s quality θ is the firm’s private
information at t = 0, and the prior probability of a good project is q ≡ P (θ = 1). Later we will use
“project success,” “good project” and/or “good borrower” interchangeably to refer to θ = 1. The
project quality θ is unobservable.

Hard and soft states. The project’s success θ ∈ {0, 1} depends on two fundamental states, one
being “hard” denoted by θh and the other being “soft” denoted by θs. Importantly, θh and θs are
potentially correlated, and the correlation is related to the span of hard information technology.

We assume both fundamental states are binary so that θh ∈ {0, 1} and θs ∈ {0, 1}, with

qh ≡ P (θh = 1) , and qs ≡ P (θs = 1) .

When Section 2.2 introduces information technologies that allow banks to observe signals (regarding
θh and θs), a crucial distinction between these states is that hard signals contain information only
about θh while soft signals contain information about θs.

Multi-dimensional fundamental states and information span Following the O-ring theory
of economic development (Kremer, 1993), we model the hard and soft states by a setting with
multi-dimensional fundamental states. As a main contribution of our paper, this offers a novel way
to study the “span” of the information available to banks.

More specifically, suppose that the success of the project θ depends on N characteristics in the
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following multiplicative way:

θ =
N∏

n=1
θn =

θh︷ ︸︸ ︷
Nh

h∏
n=1

θn ·
Nh

h +Nh
s∏

n=Nh
h

+1

θn ·
N∏

n=Nh
h

+Nh
s +1

θn

︸ ︷︷ ︸
θs

. (2)

We assume that {θn} follow independent Bernoulli distributions, i.e., θn = 1 with probability
qn ∈ [0, 1] for all n = 1, ..., N ; they capture “(unobservable) characteristics” that are critical to
the ultimate success of the project, such as product quality, market and funding conditions, the
regulatory environment, etc. As shown in (2), the hard state θh covers the first Nh ≡ Nh

h + Nh
s

characteristics while the soft state covers the last N −Nh
h . Importantly, hard and soft states overlap

across the middle Nh
s characteristics, which leads to correlated fundamental states. Later we will

vary Nh
s —i.e., the span of hard information—and study the implication of this on credit market

competition.
Since the order of characteristics plays no role in the analysis, it is without loss of generality to

analyze a simplified setting with three independent fundamental states as follows:

θh︷ ︸︸ ︷
θ = θh

h · θh
s · θs

s︸ ︷︷ ︸
θs

, (3)

with priors denoted by

qh
h ≡ P

(
θh

h = 1
)

, qh
s ≡ P

(
θh

s = 1
)

, and qs
s ≡ P (θs

s = 1) .

When θs
h = 1 with probability one (i.e., qs

h = 1 or Nh
s = 0 in Eq. (2)), this model degenerates to

independent hard and soft fundamental states as in Blickle, He, Huang, and Parlatore (2024).
Although our characterization of the credit market equilibrium is general, our main economic

analysis focuses on the specification in Eq. (3). As we will explain shortly, θh
h in Eq. (3) captures

those fundamental states that are already “hard” even before the information technology progress,
θh

s captures those states that were used to be “soft” but now can be covered by hard information
thanks to the technology progress, while θs

s captures those states that remain soft.

Credit market competition. At date t = 0, given its private information about the borrower’s
project quality (see Section 2.2), each bank j can choose to make a take-it-or-leave-it offer to the
borrower firm or to make no offer (i.e., exit the lending market). An offer consists of a fixed loan
amount of one and an interest rate r. The borrower firm accepts the offer with the lowest rate if it
receives multiple offers.
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2.2 Information Technology and Information Span

Information technology corresponds to mappings from some fundamental states to signals. We
will introduce two types of signals, each modeled as a specific mapping from its corresponding
fundamental state θh or θs to a bank-specific signal realization. To capture specialized lending, we
assume that both lenders have hard-information-based private signal hj for j ∈ {A, B} about θh

while only specialized bank A has the soft-information-based private signal s about θs. Figure 1
provides a summary of information technology.

Figure 1: Information Technology, Hard (top panel) and Soft (bottom panel)

Hard signals. We assume that both lenders have access to “hard” data (which include both
financial and operating data in the past as well as “alternative data” that become available following
the big data technology), which they can process to produce a hard-information-based private signal
hj about the firm’s fundamental state θh. We call these information “hard” signals. For tractability,
we assume that these hard signals are binary, i.e., hj ∈ {H, L}, with a realization H (L) being a
positive (negative) signal of θh. (Binary hard signal is related to the assumption that hard signals
are “decisive;” see Section 2.4.) Conditional on the (relevant) state, hard signals are independent
across lenders.

More specifically, as illustrated in the top panel of Figure 1, the hard signal technology, denoted
by Hj , takes the binary fundamental state θh ∈ {0, 1}—which could vary as the information span
changes as will be introduced next—as input, and generate a binary signal hj ∈ {H, L} as an output.
Following most of the literature with exogenous symmetric information technology (Broecker, 1990;
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Marquez, 2002), we assume that

P
(
hj = H |θh = 1

)
= P

(
hj = L |θh = 0

)
= α for j ∈ {A, B} . (4)

Here, α ∈
(

1
2 , 1
)

measures the precision of the hard signal, and captures equal probabilities of
Type I and Type II errors. Given the binary fundamental state θh, the hard signal technology
Hj thus can be summarized by two parameters: the prior of input qh = Pr (θh), and the signal’s
precision α given in (4). Finally, we assume that conditional on θh the hard signals hj = Hj (θh)
are independent across two banks.9

Span (of hard) information Define

η ≡ 1 − Pr(θh
s = 1) = 1 − qh

s > 0. (5)

We call η the information span (of hard signals). Corresponding to a larger Nh
s in (2) (or θh

s

becomes more important in (3)), an expansion of the coverage of θh leads to a smaller qh
s and hence

a greater η. All else equal, the larger η, the broader the span of hard information hj ’s, and the
greater the hard signal’s information content (and capturing more of information that was soft
previously, i.e., θh

s ).
The information span η controls the input θh to the hard signal technology Hj . This is the

key distinction between our paper and the existing literature (Broecker, 1990; Marquez, 2002).
More specifically, before soft information gets hardened the input is θh = θh

h with a prior of
qh = qh

h while after this technology improvement the input becomes θh = θh
hθh

s with a prior of
qh = qh

hqh
s = (1 − η)qh

h; see (3). Importantly, from the perspective of any hard signal technology
Hj , this only changes the prior of the binary input θh, i.e., qh (η) = (1 − η) qh

h, while keeping the
precision α constant.10

The binary structure of the hard signal captures the coarseness with which much of the hard
information is used in practice.11 The main insight that the information span stemming from the
big data technology trend differs from the precision of information is robust to a more general
non-binary hard signal structure. We intentionally assume that both lenders have the same hard
information technology because we are interested in how different aspects of information technology

9In the companion paper Blickle, He, Huang, and Parlatore (2024), we consider a general (binary) information
technology where hard signals are potentially correlated.

10Many papers that adopt the binary-fundamental-binary-signal structure, including Marquez (2002), conduct the
comparative statics on the prior of the project quality, with the implicit assumption that the signal precision can
be kept at a constant. We do acknowledge that the interpretation of constant precision depends on the particular
micro-foundation of information technology. For instance, an alternative hard signal technology could take two
fundamentals θh

h and θh
s as input and two signals as output. This will necessarily complicate the analysis, and it is

unclear this treatment will help which bank more.
11For example, credit scores are binned in five ranges even though scores are computed at a much granular level

and go from 300 to 850.
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improvement affect the relative market power when both lenders enjoy the technology advancement
symmetrically.12

Soft signal. Additionally, we endow Bank A with a signal s, which captures the bank being
“specialized” in the firm. Similar to Blickle, He, Huang, and Parlatore (2024) we assume that the
signal s is continuous. Our preferred interpretation of this additional signal is as a soft-information-
based private signal, collected after due diligence or face-to-face interactions with the borrower
after on-site visits. Besides mathematical convenience, the continuous distribution captures soft
information resulting from research tailored to the particular borrower and, therefore, allows for a
more granular assessment of the borrower’s quality.

Similar to the hard signal, the soft signal technology should be viewed as a mapping SA from the
soft fundamental state θs ∈ {0, 1} to a variable s that is correlated with θs, as shown in the bottom
panel of Figure 1. It is without loss of generality to directly work with the posterior probability of
the soft state being good θs = 1 given the soft signal realization, i.e.,

s ≡ Pr[θs = 1|s] ∈ [0, 1]. (6)

We denote the density function of s by ϕ(s)ds ≡ P(s ∈ (s, s + ds)), which satisfies
∫ 1

0 ϕ (s) ds = 1
and the prior consistency

∫ 1
0 sϕ (s) ds ≡ qs.

For later exposition purposes, our numerical examples consider s = Pr[θs = 1|θs + ϵ] =
E [θs|θs + ϵ] where ϵ ∼ N (0, 1/τ) with τ capturing the signal-to-noise ratio of Bank A’s soft infor-
mation technology. This soft signal precision τ captures similar economics as α, and we stress it
has different implications from the information span parameter η.

In light of Figure 1, one can derive the density of s conditional on θs = 1, which we denote by
ϕ1 (s) ≡ ϕ (s| θs = 1). Using the short-hand notation s ∈ ds for s ∈ (s, s + ds), we have

ϕ1 (s) ≡ 1
ds

P(s ∈ ds|θs = 1) =
P(θs = 1|s ∈ ds) · 1

dsP(s ∈ ds)
P(θs = 1)

= s · ϕ(s)
qs

. (7)

Similarly, we can calculate

ϕ0 (s) ≡ ϕ (s| θs = 0) = (1 − s)ϕ(s)
1 − qs

.

As s is the posterior expectation of θs and a higher value of s is “good news” (Milgrom, 1981), these
two densities, i.e., ϕ1(·) and ϕ0(·), satisfy the strict Monotone Likelihood Ratio Property (MLRP).

2.3 Discussions on Modelling and Related Literature

Our model departs from the literature in several ways that warrant some discussion.
12In the companion paper Blickle, He, Huang, and Parlatore (2024), we consider a general (binary) information

technology that is potentially asymmetric between lenders.
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Hardening soft information. The concept of information span η allows us to model “hardening
soft information.” To see this, consider Eq. (3) in Section 2.1. There, the first term θh

h captures
those fundamental states that are already “hard” even before the information technology progresses;
we call them “always hard” fundamentals. The second term θh

s captures those states that were
used to be “soft” but now can be covered by hard signals thanks to the technology progress;
the coverage of these “hardened soft” fundamentals grows with information span η. Finally, θs

s

captures those states that remain soft; and we call them “always soft” fundamentals. Essentially,
technological advancement (e.g. big data and machine learning) enables lenders to acquire pertinent
hard objective data points, i.e., hard signals hj for both lenders, about these “hardened soft”
fundamentals θs

h, which previously could only be collected through human interactions and were
accessible only to the specialized lender.

Hard information technology. In general information technology corresponds to mappings
from some fundamental states to signals, and as usual, there are potentially important modeling
choices in specifying the details of the (hard) information technology.13 As the top panel of Figure
1 illustrates, the hard information technology takes the entire binary hard fundamental θs as input
and generates a binary signal as output. But this is not the only way in a setting of multi-
dimensional fundamental states; given our hard fundamental θh = θh

s θs
s, another natural modeling

is to keep the original hard and soft signals (hj ’s and s) and introduce additional signals of the
hardened soft fundamental θs

h. Section 5.1 considers this alternative and demonstrates that our
economic implications are qualitatively similar to our baseline modeling.

Information span versus signal precision. The information span η is a key parameter in
our analysis. By incorporating multi-dimensional information, our model highlights the distinction
between the information span η and information precision (α for h-signal and τ for s-signal).
Take α as an example; recall that α measures the quality/precision of hard information while η

measures the scope/breadth of hard information. Both are significant aspects of the astonishing
technological advancement in the past decades but with important differences. When the computer
was introduced, it was faster and easier to process and compile bank statements. This improvement
in processing made information more precise but did not change its scope much. However, the use of
“big data,” a distinctive trend in information technology during the last decade, has changed what
can be digitized as hard information (think of Amazon predicting consumer preferences). As many
scholars have argued, big data technology has expedited the process of “hardening soft information”
by converting subjective or qualitative data (soft information) into more objective or quantifiable
(hard) metrics; for recent evidence in the banking industry, see for example in Hardik (2023). By
incorporating multi-dimensional information, our model allows us to study the distinction between

13Information design along the line of Kamenica and Gentzkow (2011); Bergemann and Morris (2016) addresses
this issue but is beyond the scope of this paper.
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these two aspects, which, as we explain shortly, have distinctive economic implications regarding
credit market competition.

Endogenous information structure. Throughout we take the lenders’ asymmetric information
technologies as given. Blickle, He, Huang, and Parlatore (2024) endogenize this asymmetric infor-
mation technology in a symmetric setting with two firms, a and b, where Bank A (B) endogenously
becomes specialized by acquiring both hard and soft signals for firm a (b), while non-specialized
Bank B (A) only acquires the “hard” signal of the firm a (b). There, we highlight a key differ-
ence when acquiring these two types of signals: a one-time investment—for example, installing IT
equipment and software—enables lender j to receive two hard signals, one for each firm, whereas
soft information must be collected separately for each firm. This is connected to the next point
regarding the modeling of soft/hard information.

Connection to the literature of soft/hard information. The literature on soft and hard
information (e.g., Stein, 2002; Liberti and Petersen, 2019) often emphasizes that the latter is easily
verifiable and hence transferable (within an organization); for instance, Bertomeu and Marinovic
(2016) and Corrao (2023) model “soft” information via a cheap talk game a la Crawford and Sobel
(1982) where the messages are soft and carry no intrinsic meaning themselves. Since we do not
explicitly model communications within or across banks, whether the information is verifiable is
irrelevant to the core economics that our model aims to capture.

Nevertheless, our information technology discussed above, i.e., hard signals are available for both
lenders while only the specialized lender has access to the soft signal, connects to this traditional
view of soft information. Exactly due to the non-verifiable nature of soft information, loan officers
often need to collect it individually and possess the expertise to interpret it, whereas verifiable
hard information can be processed by anyone in a rather routine way. What is more, when soft
information becomes hardened so that the IT equipment and software can analyze it from data,
naturally some soft information becomes verifiable and hence available to non-specialists. This is
exactly the logic in Karapetyan and Stacescu (2014) where hard information can be shared while
soft cannot.

2.4 Decisive Hard Signals and Parametric Assumptions.

For tractability reasons, similar to Blickle, He, Huang, and Parlatore (2024), throughout our anal-
ysis we assume that the hard signal is “decisive” for participation: Bank j participates if and only
if it receives hj = H. For the specialized Bank A, the hard signal serves as “pre-screening,” in the
sense that the bank rejects the borrower upon receiving an L signal, while upon an H signal it
makes a pricing decision based on its soft signal s. In other words, for the specialized lender, the
“principal” signal is the one that determines whether to lend, and the “supplementary” one helps
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its loan pricing.14

To ensure that the pre-screening hard signal is “decisive,” throughout the paper we impose the
following parameter restrictions.

Assumption 1. (Decisive Hard Signals)

• Bank A rejects the borrower upon an L hard signal, regardless of any soft signal s:

qh (1 − α) r < (1 − qh) α; (8)

• Bank B is willing to participate if and only if its hard signal hB = H:

qαr > (qh − q) α + (1 − qh) (1 − α) . (9)

Assumption 1 says that the hard signal has to be sufficiently strong (informative) to serve as
pre-screening of loan applications for both lenders. Condition (8), states that it is not profitable
for Bank A to compete upon receiving a hard signal L even when the soft signal reveals that the
soft fundamental θs is good with certainty. This condition implies that Bank B, which only has
the hard signal and is uncertain about the realization of the soft fundamental, also chooses not to
compete upon receiving hB = L. Condition (9) states that upon hB = H, Bank B is willing to
lend at the highest possible interest rate if it is the monopolist lender. This condition also implies
that Bank A, which also receives a soft signal, is willing to lend at the highest interest rate if it is
the monopolist lender upon hA = H if it also observes high enough realizations of its soft signal.

2.5 Credit Market Equilibrium Definition

We now formally define the credit market equilibrium with specialized lending, along the line of
Blickle, He, Huang, and Parlatore (2024).

Bank strategies. Conditional on the hard signal, we define the space of interest rate offers to be
R ≡ [0, r] ∪ {∞}. Here, r is the exogenous maximum interest rate (or project return, see Section
2.1) and ∞ captures the strategy of not making an offer.

For Bank A, we denote its pure strategy by rA (s) : S → R, which induces a distribution of its
interest offerings denoted by F A (r) ≡ Pr

(
rA ≤ r

)
according to the underlying distribution of the

14Alternatively, the principal signal represents the result of a credit screening test, while the supplementary signal
serves the role of internal ratings (of borrowers who are qualified for credit). This ranking portrays the key role
played by hard information for large banks when dealing with new borrowers. Indeed, as documented on page
1677 of Crawford, Pavanini, and Schivardi (2018), Italian large banks list the factors they consider in assessing any
new loan applicant’s creditworthiness, with the following order of importance: i) hard information from the central
bank (financial statement data); ii) hard information from Credit Register; iii) statistical-quantitative methods; iv)
qualitative information (i.e., bank-specific soft information codifiable as data); v) availability of guarantees; and vi)
first-hand information (i.e., branch-specific soft information).
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soft signal. (At this point we take as given that Bank A uses pure strategy, though we formally
prove this result in Proposition 1). Finally, the endogenous support of the equilibrium interest rates
offered when making an offer is a sub-interval of [0, r]. Therefore, with a slight abuse of terminology,
we refer to that sub-interval as the “support” of the interest rate distribution even though loan
rejection (r = ∞) could also occur along the equilibrium path. Bank B randomizes its interest
rate offerings conditional on a positive hard signal in equilibrium, with an endogenous cumulative
distribution F B (r) ≡ Pr

(
rB ≤ r

)
. Since domain of offers includes r = ∞ which captures rejection,

it is possible that F B (r) = P
(
rB < ∞|hB = H

)
≤ 1.

The borrower picks the lower rate from two competing lenders (if multiple loan offers are
available). For instance, conditional on both banks receiving positive hard signals, if Bank B

quotes rB, then its winning probability 1 − F A
(
rB
)

equals the probability that Bank A with soft
signal s offers a rate that is higher than rB, which includes the event that Bank A rejects the
borrower (rA(s) = ∞), presumably because of an unfavorable soft signal.15 When rA = rB = ∞,
the borrower fails to get the loan.

Definition 1. (Credit market equilibrium) A competitive equilibrium in the credit market (with
decisive general signals) consists of the following lending strategies and borrower choice:

1. A lender j rejects the borrower or rj = ∞ upon gj = L for j ∈ {A, B}; upon gj = H,

i) Bank A offers rA (s) : [0, 1] → R ≡ [0, r] ∪ {∞} to maximize its expected lending profits
given gA = H and s, which induces a distribution function F A (r) : R → [0, 1];

ii) Bank B offers rB ∈ R to maximize its expected lending profits given gB = H, which
induces a distribution function F B(r) : R → [0, 1];

2. Borrower chooses the lower offer min{rA, rB}.

As standard, there exists an endogenous lower bound of interest rate r > 0, so that the two
distributions F j (·), j ∈ {A, B} share a common support [r, r] (besides ∞ as rejection). The
following lemma is standard in the literature and shows that resulting equilibrium strategies in our
setting are well-behaved.

Lemma 1. (Equilibrium Structure) In any credit market equilibrium

a. The two lenders’ interest rate distributions F j (·), j ∈ {A, B} are smooth over [r, r), i.e. no
gap and atomless, so that they admit well-defined density functions

b. At most only one lender can have a mass point at r.
15Upon ties, i.e. rA = rB < ∞, borrowers randomly choose the lender with probability one-half, although the

details of the tie-breaking rule do not matter as ties occur as zero-measure events in equilibrium.
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3 Credit Market Equilibrium Characterization

In this section we solve for the credit market equilibrium with specialized lending and potentially
overlapping information spans. Blickle, He, Huang, and Parlatore (2024) characterizes the credit
market equilibrium under two key conditions: i) binary hard (“general” in that paper) signals are
decisive, and ii) the two binary and one continuous signals are conditionally independent when
success (i.e., independent conditional on the project’s success). Our setting with arbitrary infor-
mation span satisfies both conditions and therefore can be viewed as a special case of the general
information structure in Proposition 4 in Blickle, He, Huang, and Parlatore (2024). For this reason,
our exposition of this section will be less formal and instead focus on illustrating the key properties
of the equilibrium, especially the differences from the special case of η = 1 in Blickle, He, Huang,
and Parlatore (2024).

3.1 Bank Profits and Optimal Strategies

Joint Distributions of Signals and Posterior

To start, we define the joint and posterior probabilities of project success θ = 1 of a collection of
certain events. We use the ordered subscript {hAhB} ∈ {HH, HL, LH, LL} to denote the events of
the corresponding hard signal realizations, where HL stands for Bank A’s (B’s) hard signal being
H (L). Denote by phAhB the joint probability of any collection of hard signal realization; here, the
“bar” indicates “taking the average over all possible soft signal realizations.” For instance,

pHH ≡ P
(
hA = H, hB = H

)
= qhα2 + (1 − qh) (1 − α)2 . (10)

Similarly, we denote by µhAhB the posterior of project success conditional on hAhB; for instance

µHH ≡
P
(
hA = H, hB = H, θ = 1

)
P (hA = H, hB = H)

= qhα2

qhα2 + (1 − qh) (1 − α)2 · qs
s. (11)

Competing lenders also need to assess the probabilities of hard signals together with the soft
signal. Denote by phAhB (s) ds ≡ P

(
hA, hB, s ∈ ds

)
the joint probability of the two hard signals

being hAhB and s ∈ ds (i.e., the soft signal s falls in the interval (s, s + ds)). Similarly, µhAhB (s)
denotes the posterior probability of project success, i.e., the fundamental state θ = 1, conditional
on the hard signal realizations and the soft signal:

µhAhB (s) = P
(

θ = 1| hA, hB, s
)

=
P
(
θ = 1, hA, hB, s ∈ ds

)
P (hA, hB, s ∈ ds)

. (12)

And, under the multiplicative structure in Eq. (3), project success θ = 1 implies that θh = θs = 1,
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which allows us to derive the joint probability of P
(
θ = 1, hA, hB, s ∈ ds

)
as

phAhB (s) µhAhB (s) = P (θ = 1)︸ ︷︷ ︸
q

·P
(
hA |θh = 1

)
· P
(
hB |θh = 1

)
· ϕ (s| θs = 1)︸ ︷︷ ︸

ϕ1(s)

. (13)

This result points to conditional independence when success, i.e., all signals, including hard and
soft, are independent conditional on project success θ = 1. We will come back to this point later
when we derive the equilibrium.

Bank A’s Strategy

Consider the problem of Bank A when it observes a positive hard signal hA = H and a soft signal
s. If Bank A chooses to exit the lending market by quoting r = ∞, its expected profits are given by
πA (r = ∞, s) = 0. If Bank A chooses to participate in the lending market by offering and interest
rate r ∈ [r, r], its expected profits are given by

πA (r, s) ≡ pHH(s)︸ ︷︷ ︸
hA=H,hB=H,s

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHH(s) (1 + r) − 1] + pHL(s)︸ ︷︷ ︸
hA=H,hB=L,s

[µHL(s) (1 + r) − 1] ,

(14)

where the first term takes into account the expected payoff conditional on winning the borrower
when Bank B participates in the market and the second term accounts for the likelihood that Bank
B receives a low signal. More specifically, Eq. (14) considers that Bank A cannot observe Bank
B’s hard signal hB when making an offer. With probability pHH(s), both banks get favorable hard
signals H, and Bank A wins with probability

[
1 − F B(r)

]
if it offers r, whereas with probability pHL

Bank B receives a low hard signal and Bank A faces no competition for the borrower. Since Bank
B randomizes its strategy upon hB = H, from Bank A’s perspective winning the price competition
is not informative about the borrower’s quality. But, whether Bank B participates in the loan
market or not affects Bank A’s expected quality of the borrower; this economic force is captured
by µHH(s) and µHL(s), which we have introduced in Section 3.1.

Given the profit function defined above, Bank A’s optimal interest rate offering is rA (s) ≡
arg maxr∈R πA (r, s). As shown in Blickle, He, Huang, and Parlatore (2024), Bank A’s equilibrium
pricing strategy rA(s) is decreasing in s, hits the interest rate cap r when the soft signal worsens,
and in general will jump to ∞ for sufficiently low s. Formally, ŝ ≡ sup

{
s| rA (s) = r

}
; that is to

say, ŝ is the highest realization of the soft signal such that Bank A quotes r.16 And, we define
x ≤ ŝ as the threshold such that πA (r, x) = 0; that is to say, Bank A rejects the borrower for all

16Throughout the paper we adopt the convention that sup {∅} = inf {[0, 1]} = 0.
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s < x so that ŝ ≡ sup
{

s| rA (s) = ∞
}

. Note that x = ŝ could occur along the equilibrium path.
Given these definitions, it is straightforward to show that rA (s) = r for s ∈ [x, ŝ), and rA (s) = ∞
for s ∈ [0, x). In sum, we can define the inverse function (correspondence) of rA (s) to be

sA(r) ≡


rA(−1)(r), when r ∈ [r, r),

[x, ŝ), when r = r,

[0, x), when r = ∞.

(15)

We take the convention that rA(x) = r when ŝ coincides with x.

Bank B’s Strategy

For the non-specialized lender B a standard winner’s curse ensues because the outcome of com-
petition against the specialized Bank A is informative about θs. More specifically, besides the
possibility of the competitor’s unfavorable hard information faced by Bank A, the non-specialized
lender B who wins the price competition also infers that rA (s) > rB, which implies s < sA

(
rB
)
.

Taking these unfavorable inferences into account, Bank B’s lending profits when quoting r are

πB (r) ≡
∫ sA(r)

0
pHH(t)︸ ︷︷ ︸

hA=hB=H,t

[µHH (t) (r + 1) − 1] dt + pLH︸︷︷︸
hA=L,hB=H

[µLH (r + 1) − 1] . (16)

The first term in Eq. (16) accounts for the event in which Bank A competes and the second term
considers the case in which Bank A receives a low hard signal and does not participate. Note that
Bank B infers the project’s quality based on the event of “winning the borrower,” since given an
offer r Bank B wins the borrower only when Bank A receives an unfavorable soft signal realization
t < sA(r). Hence, Bank B updates its posterior about θ in the event of winning the borrower.
Importantly, since the span of hard and soft information can overlap, the updating is not only
about the soft fundamental θs, as in Blickle, He, Huang, and Parlatore (2024), but also about the
hard fundamental θh.

Therefore, Bank B’s strategy F B(·) maximizes its expected payoff

max
F B(·)

∫
R

πB (r) dF B (r) . (17)

With mixed strategies, profit-maximizing Bank B is indifferent between any action on its support.

3.2 Credit Market Equilibrium

We follow the same derivation as in Blickle, He, Huang, and Parlatore (2024) to derive the credit
market equilibrium with specialized lending, which is characterized in the proposition below.
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Proposition 1. (Credit Market Equilibrium) In the credit market equilibrium, Bank A follows
a pure strategy as in Definition 1. In this unique equilibrium, lenders reject borrowers upon a low
hard signal realization hj = L for j ∈ {A, B}. Otherwise (i.e., when hj = H), their strategies are
characterized as follows:

1. Bank A with soft signal s offers

rA (s) =


min

{
πB+

∫ s

0 pHH(t)dt+pLH∫ s

0 pHH(t)·µHH(t)dt+pLHµLH

− 1, r

}
, for s ∈ [x, 1]

∞, for s ∈ [0, x) .
(18)

The equation pins down r = rA (1), For s ∈ (ŝ, 1] where ŝ = sup sA(r), rA(·) is strictly
decreasing with its inverse function sA(·) = rA(−1)(·).

2. Bank B makes an offer with cumulative probability given by (1{X} = 1 if X holds)

F B (r) =


1 −

∫ sA(r)
0 tϕ(t)dt

qs
, for r ∈ [r, r) ,

1 − 1{πB=0} ·
∫ ŝ

0 tϕ(t)dt

qs
, for r = r.

(19)

When πB = 0, F B (r) = F B (r−) ≤ 1 is the probability that Bank B makes the offer (and
with probability 1

qs

∫ ŝ
0 tϕ (t) dt it withdraws by quoting rB = ∞); when πB > 0, F B (r) = 1

and there is a point mass of 1
qs

∫ ŝ
0 tϕ (t) dt at r.

3. The equilibrium Bank B’s profit is given by

πB =
[
π̂B
(
r; sA (r) = sbe

A

)]+
, (20)

where sbe
A satisfies π̂A

(
r, sbe

A ; F B (r) =
∫ 1

sbe
A

sϕ(s)dt
qs

ds
)

= 0 with auxiliary functions π̂B(·; ·) and
π̂A (·, ·; ·) defined in Appendix.

Similar to Milgrom and Weber (1982), it is relatively easy to solve for Bank A’s equilibrium
strategy by invoking Bank B’s indifference condition that it has to make the same profit πB across
all rates on the support [r, r]. Plugging in r = rA(s) in (16) we have,

πB (r) =
[∫ s

0
pHH(t)µHH (t) + pLH(t)µLH

]
︸ ︷︷ ︸

borrowers who repay

(
1 + rA(s)

)
−
(∫ s

0
pHH(t)dt + pLH

)
︸ ︷︷ ︸

lending amount

. (21)

Solving for rA(s) yields (18) in Proposition 1 which further takes into account of necessary trun-
cation on interest rate cap r. Although the derivation of Bank B’s equilibrium strategy is more
involved, conceptually it is quite simple: B’s equilibrium strategy needs to support rA (·) in (18)
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to be Bank A’s optimal strategy. Specifically, as shown below, (22) gives Bank A’s first-order
condition (FOC) that balances the lower probability of winning against a higher payoff from served
borrowers, and this holds for sA(r) so that r is optimal at this signal:

F B′ (r) pHH(sA(r))
[
µHH(sA(r)) (1 + r) − 1

]︸ ︷︷ ︸
A’s marginal borrowers

=
[
1 − F B (r)

]
pHH(sA(r))µHH(sA(r)) + pHL(sA(r))µHL(sA(r))︸ ︷︷ ︸

A’s existing borrowers

.

(22)

On the other hand, to maximize (16), Bank B’ FOC is

[
−sA′ (r)

]
· pHH

(
sA(r)

) [
µHH

(
sA (r)

)
(1 + r) − 1

]
︸ ︷︷ ︸

B’s marginal borrowers

=
∫ sA(r)

0
pHH (t) µHH (t) dt + pLHµLH︸ ︷︷ ︸

B’s existing borrowers

. (23)

Similarly, when Bank B marginally cuts its quote, it gets (−sA′ (r))dr additional borrowers of
quality µHH(sA (r)) given competition (which occurs with probability pHH(sA(r))), and this is
exactly offset by the marginal lower payoff from Bank B’s existing borrowers.

Two key further steps allow us to derive F B(r) based on (22)-(23). First, note that both lenders
are competing on the same marginal borrower (type), i.e., pHH(sA(r))

[
µHH

(
sA(r)

)
(1 + r) − 1

]
;

so we can cancel this term. Second, conditional independence when success, i.e., all signals are
independent conditional on project success θ = 1,17implies that

pHL

(
sA(r)

)
µHL

(
sA(r)

)
= 1 − α

α
pHH

(
sA(r)

)
µHH

(
sA(r)

)
, (24)

so the second term on right hand side of (22) only depends on the event of
{

hA = hB = H, s = sA(r)
}

.
Applying these two steps, we obtain

F B′ (r)
[∫ sA(r)

0
pHH (t) µHH (t) dt + pLHµLH

]
= −sA′ (r)

[ 1
α

− F B (r)
]

pHH

(
sA(r)

)
µHH

(
sA(r)

)
,

17Formally, because of the multiplicative structure in (2), we have

P
(

hA, hB , s ∈ ds
∣∣ θ = 1

)
= P

(
hA, hB , s ∈ ds

∣∣ θh = θs = 1
)

= P
(

hA
∣∣ θh = 1

)
· P
(

hB
∣∣ θh = 1

)
· P (s ∈ ds| θs = 1) .

Relating to (13), it implies that pHL(s)µHL(s)
pHH (s)µHH (s) = P(hB=L|θ=1 )

P(hB=H|θ=1 ) = 1−α
α

, i.e., (24). Intuitively, conditional on success
(θ = 1), for Bank A seeing signal s does not affect the likelihood ratio of its opponent to receive H or L hard signals.
This is not true conditional on project failure.
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which can be simplified further to

d

dr

equals a constant︷ ︸︸ ︷[ 1
α − F B(r)∫ sA(r)

0 pHH (t) µHH (t) dt + pLHµLH

]
= 0. (25)

It is then clear that the term inside the bracket of (25) has to be independent of r, which allows
us to derive Bank B’s equilibrium strategy (19) in Proposition 1 after imposing proper boundary
conditions.

Based on the intuition that two asymmetrically informed lenders are competing on the same
marginal borrower and conditional independence when success (which are the two key steps men-
tioned above), Blickle, He, Huang, and Parlatore (2024) offer a detailed explanation on why this
key ODE (25) holds in equilibrium.

Finally, the equilibrium characterization point 3) in Proposition 1 highlights a key difference
between the two types of equilibrium: one with πB = 0—we call it the zero-weak equilibrium—and
the other with πB > 0 so that only Bank B places a positive mass on the interest rate cap r—we call
it the positive-weak equilibrium as the weak bank earns positive profits. In the zero-(positive-)weak
equilibrium, only Bank A (Bank B) places a positive mass on the interest rate cap r. This captures
the competition at the interest rate cap r, exactly reflecting point c) in Lemma 1—otherwise,
lenders will undercut each other at this point. We will soon show that, as information span η

increases (due to the hardening of soft information), the non-specialized lender benefits more and
a positive-weak equilibrium is more likely to arise.

4 Credit Market Competition Equilibrium

Our model is designed to understand how changes in the span of information affect the equilibrium
in the credit market, highlighting the differences between hardening soft information and shifts in
other characteristics of information technology, such as the precision of signals. In this section, we
first explore how an increase in the span of the hard signals changes the inference problem of Bank
B about its opponent’s information set and, through it, the equilibrium in the credit market. We
then contrast how bank profits respond to an increase in the span of hard information and to an
increase in its precision. Finally, we focus on the implications an increase in the span of the hard
signal has on the allocation of credit and welfare.

4.1 Information Span and Equilibrium Illustration

The lenders’ beliefs about their opponent’s information are key determinants of the equilibrium.
In this section, we show how the span of hard information affects these beliefs, which then helps
us understand the effects of hardening soft information on the credit market equilibrium.
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Span of Hard Information

The information span η determines the extent of overlap between the hard and soft fundamentals,
which determines the correlation between hard and soft signals. When η = 0, there is no overlap
between hard and soft fundamentals and the hard and soft signals are independent. When η > 0, the
hard and soft fundamentals (and the signals about them) are correlated. We illustrate the effect of
changes in the span of hard information on each lender’s beliefs by focusing on two particular events.
This analysis is the foundation of our discussion of the effects of “hardening soft information” on
the credit market equilibrium.

Two positive hard signals. We start with the event {H, H, s}, where two lenders receive positive
hard signals, (potentially) competing against each other, and Bank A receives a soft signal s. The
probability of this event is

pHH (s) = qα2ϕ1 (s) +
(
1 − qh

h

)
(1 − α)2 ϕ (s) + qh

h︸︷︷︸
θh

h
=1

(1 − qh
s

)
︸ ︷︷ ︸

θh
s =0

(1 − α)2 +
(
qh

s − qs

)
︸ ︷︷ ︸
θh

s =1,θs
s=0

α2

ϕ0 (s)

(26)

The first term captures the probability of the event {H, H, s} when the project is good (θ = 1 which
occurs with probability q). This event is independent of the information span η as hard and soft
signals are conditionally independent when the project is good (see footnote 17). The remaining
two terms refer to the cases in which the project is bad (θ = 0), which can occur when one of the
states θh

h, θh
s , or θs

s takes a value of zero.
The second term captures the events with θh

h = 0. This term is independent of the span η. In
this case, θh = 0 irrespective of θh

s . Note that while the likelihood of HH when θ = 1 or θh
h = 0

(i.e., the first or the second term in (26)) is independent of η, both terms depend on the precision
of the hard signal because α determines the conditional probability of receiving hard signal H.

The third term in Eq. (26) captures the novelty of our modeling, i.e., how the hardening of
soft fundamental affects the likelihood of two banks competing in the credit market. This term
includes two scenarios: i) when θh

s = 0, both the hard fundamental and the soft fundamental fail
θh = θs = 0, so HH occurs with probability (1 − α)2 and the soft signal density is ϕ0(s); and
ii) when θh

s = 1 but θs
s = 0, the hard fundamental succeeds θh = 1 (therefore HH occurs with

probability α2) but the soft fundamental fails (the soft signal density is ϕ0(s)).
Using η = 1−qh

s and simplifying the terms on α, we can rewrite the joint probability of {H, H, s}
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as follows.

pHH (s) = qα2ϕ1 (s) +
(
1 − qh

h

)
(1 − α)2 ϕ (s) +

[
(1 − qs) α2 − η (2α − 1)

]
︸ ︷︷ ︸

↓ in η as α> 1
2

qh
hϕ0 (s) . (27)

The key message in Eq. (27) is captured by the last term: a broader information span reduces the
probability of the competition scenario HH when soft fundamentals are unsuccessful θs = 0. Before
soft information becomes hardened, i.e., when η = 0, the state θs is discernible only through the
soft signal s. Technological advancements that harden soft information, i.e., increases in η, allow
lenders to learn about θs from hard signals. When competing in the credit market, an increase in
η affects how lenders update their beliefs, especially for the non-specialized lender B who does not
observe a direct signal of s but understands that competition occurs in the event of HH. As the
overlapping state θh

s generates a positive correlation between soft and hard signals, two positive
hard signal realizations (the event of competition under HH) lead Bank B to update its beliefs
about the opponent lender’s soft signal distribution upward when soft information is hardened.

To further illustrate this point, we compute ϕ (s |HH ), i.e., the conditional density of s given
HH, i.e., the event where lenders compete. To make the point clearer, we set qh

h = 1 so that q = qs

and hard signals only reflect the overlapping state θh
s , and the resulting conditional density of the

soft signal s is

ϕ (s |HH ) =
qsα2ϕ1 (s) +

[(
1 − qh

s

)
(1 − α)2 +

(
qh

s − qs

)
α2
]

ϕ0 (s)

(1 − qh
s ) (1 − α)2 + qh

s α2

= ϕ0 (s) +

↑ in η as α> 1
2︷ ︸︸ ︷

α2

α2 − (2α − 1) η
· qs [ϕ1 (s) − ϕ0 (s)] . (28)

Without hardening soft information (η → 0) as in Blickle, He, Huang, and Parlatore (2024),
independent hard and soft signals imply that

ϕ (s |HH ) = (1 − qs) ϕ0 (s) + qsϕ1 (s) = ϕ (s) . (29)

When hard information becomes broader, this conditional density puts more weight on the favorable
distribution ϕ1(s), as suggested by the greater coefficient α2

α2−(2α−1)η . Put differently, given the
monotone likelihood ratio property, we know ϕ1 (s) − ϕ0 (s) > 0 for relatively high soft signals.
Hence, the conditional density ϕ (s |HH ) increases with η for high values of s implying that a
favorable soft signal is more likely to arise (upon HH) when the span of hard information is
broader. In contrast, for relatively low soft signals with ϕ1 (s) − ϕ0 (s) < 0, the opposite occurs
so the conditional density ϕ (s|HH) decreases with η. Finally, one can show that the coefficient
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α2

α2−(2α−1)η in (28) increases with α, i.e., the updating towards ϕ1 (s) is stronger when HH is more
precise about underlying states.

This effect on the conditional distribution on Bank A’s soft signal implies that a larger informa-
tion span also reduces the winner’s curse for Bank B from Bank A’s private soft signal. In turn, this
implies that the non-specialized bank benefits more from technological advancements that harden
soft information. To see this, note that, for Bank B, winning the bids rB < rA upon competing
(HH) indicates that the opponent’s soft signal assessment is unfavorable, i.e., s < sA

(
rB
)

as sA (·)
is decreasing. However, a larger η leads to an upward update of the opponent’s signal s given the
event of positive hard signals {HH}, which attenuates this winner’s curse.

Opposite hard signals. When studying the equilibrium of credit market competition, it is
also important to understand the events where two lenders receive opposite hard signals—more
specifically when one bank’s hard signal is positive while the opponent lender’s signal is negative.
As illustrated in the lenders’ profit functions πA in (14) and πB in (16), these events represent
the critical economic force behind the “winner’s curse” in models with hard signals only (Broecker,
1990; He, Huang, and Zhou, 2023).18 Going through steps similar to (26), one can calculate the
probabilities for these events as

pHL (s) = pLH (s) = α (1 − α) ϕ (s) . (30)

Interestingly, this probability is only affected by the precision of the hard signal α, but not by the
span of hard information η. The effect of α is natural: when α increases, hard signals become more
precise, hA and hB become more correlated, and opposite hard signals hA ̸= hB are less likely to
arise.

The observation that the information span η does not enter (30) relies on the symmetry of the
hard information technology (i.e., same Type I and II errors). Intuitively, this symmetry implies
that independent of the realization of θh

s , the probability of hA ≠ hB is always α (1 − α). Because
no information about the fundamental is revealed from the disagreement events HL or LH, the
distribution of the soft signal conditional on opposite hard signals remains the unconditional one:

ϕ (s |HL) = ϕ (s |LH ) = ϕ (s) . (31)

As discussed below, this property facilitates our later analytical proof and helps us highlight the
economic mechanism behind our results more clearly.

18In our model, as in Blickle, He, Huang, and Parlatore (2024), the non-specialized lender B faces a winner’s curse
even in the event of HH because of the soft signal received by the specialized lender only.
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Figure 2: Equilibrium strategies and profits for information span η. Panel A depicts rA(s) as
a function of s and Panel B plots F B′(r) as a function of r; strategies for η+ = 0.05 are depicted in red
with markers while strategies with η0 = 0 are depicted in blue. Panel C depicts Bank A’s thresholds
ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits for two lenders, both as a
function of η. Parameters: r = 0.36, qh = 0.8, qs = 0.9, α = 0.7, and τ = 1.

Credit Market Equilibrium and Information Span

Figure 2 illustrates how the credit market equilibrium responds to changes in the span of hard
information η. For ease of exposition, we assume that Bank A’s soft signal s is obtained from
observing a noisy version of θs, i.e., θs + ϵ, so that

s = E [θs|θs + ϵ] . (32)

Here, ϵ ∼ N (0, 1/τ) indicates white noise, with the precision parameter τ capturing the signal-to-
noise ratio of Bank A’s soft information technology.
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The top two panels in Figure 2 plot both lenders’ pricing strategies conditional on making an
offer, with Panel A plotting Bank A’s rA(s) as a function of s and Panel B the density dF B′ for
Bank B. We have plotted the equilibrium pricing strategies for two levels of information span η:
the baseline η0 = 0, and a higher η+ = 0.05. Overall, with a greater η, Bank B becomes more
aggressive as its distribution of offered rate shifts downward (Panel B), with a lower equilibrium
lower bound r+ < r0. This is consistent with the premise that hardening soft information levels
the playing field of the non-specialized lender in our model.

As we have explained in Section 3.1, in equilibrium rA(s) decreases in s—that is to say, when
the specialized Bank A receives a more favorable soft signal about credit quality, it bids more
aggressively with a lower rate to win the borrower over its opponent. In Panel A we observe that
the entire curve rA(s) shifts downward in response to the more aggressive bidding by Bank B.

Panel C plots the two soft signal cut-offs for the specialized Bank A, i.e., ŝ at which it starts
quoting r and x at which it starts rejecting the borrower. For sufficiently large η, ŝ and x coincide
reflecting a zero probability mass on the interest rate cap r.

Finally, Panel D plots the expected profits—E(πA) and πB—for two lenders; when η goes up,
the non-specialized lender becomes relatively stronger, leading to a strictly positive πB as shown
in Panel D. In other words, we have a positive-(zero-) weak equilibrium when η is relatively high
(low); and this is why we put subscript “+” for the larger η in Panel A-B.

To piece all panels together, consider the competition at interest rate r. As shown in Panel
A-B, for a low information span η0 = 0 so that πB = 0 in equilibrium, Bank A has a point mass at
r (corresponding to s ∈ (x, ŝ) as in Panel C) but Bank B does not, while for a high η+ = 0.05 so
that πB > 0 then the opposite holds. The underlying economics is rather straightforward. Thanks
to the big data technology that hardens soft information, a sufficiently large η leads to a positive-
weak equilibrium where the non-specialized Bank B places a point mass on r, enjoying some “local
monopoly power” as it is the only lender when Bank A rejects the borrower upon s < ŝ = x.
Importantly, this is still profitable for Bank B: for a sufficiently large η, the non-specialized Bank
B faces a relatively minor winner’s curse due to the opponent’s soft signals (see earlier discussion
in this section). In contrast, for a smaller span η, we are in a zero-weak equilibrium, where the
specialized Bank A places a point mass on this interest rate (when s ∈ (x, ŝ), as shown in Panel C)
while the non-specialized Bank B withdraws.

Last but not least, it is important to recognize that Bank A’s profits can also increase with
the information span η in the parameter range of positive-weak equilibrium. Figure 3 shows such
an example in which case Bank A’s expected profits increase with η in Panel B and contrasts it
with the case in which the opposite holds shown in Panel A (which is just Panel D in Figure 2).
This example highlights that the way in which we model hardening soft information implies the
same technological improvement for the specialized and non specialized banks. Comparing the
parameters that lead to these two cases, that E(πA) increases with η is more likely to arise when
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Figure 3: Expected lender profits. Panel A and Panel B show expected lender profits as a function of
the span of hard information η under different primitive settings. The solid lines correspond to Bank A while
the dashed lines correspond to Bank B. Parameters: Panel A, r̄ = 0.36, qh = 0.8, qs = 0.9, αu = αd = α =
0.7, τ = 1; Panel B, r̄ = 0.33, qh = 0.8, qs = 0.9, αu = αd = α = 0.6, τ = 0.1.

signal precisions are low. When the precision of the hard signal α is relatively low, the credit
market is less competitive as lenders bid less aggressively due to the high uncertainty in screening.
When the precision of the soft signal τ is relatively low, Bank A, who initially has an imprecise
soft signal about the soft fundamental θs, benefits more as hardening soft information also helps in
learning about θs. Hence, Bank A’s profits increase as the technology improvement dominates the
intensified competition from Bank B. In later welfare analysis in Section 4.3, we will show shortly
that in this case likely every agent in the entire sector enjoys a higher surplus (hence a Pareto
improvement).

Remark. (Hardening soft information) Throughout the paper, we use the hardening of soft
information as an example of technological change that can increase the span of hard information.
We do this for two reasons. First, to fix ideas and provide a concrete setting in which our model
applies. Second, because of the practical relevance of the example in the current “Big Data” en-
vironment. However, our results are broader and apply to any circumstance in which access to
information is democratized and characteristics previously accessible only to a monopolist are now
“learnable” by all market participants.

4.2 Bank Profits: Information Span vs. Information Precision

A key advantage of our model is that it allows us to distinguish between different aspects of
information technology. In this subsection, we compare the effect of changes in the information
span of hard signals on bank profits to that of changes in the precision of hard signals.
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Information Span and Bank Profits

We start by formally showing that an enlarged information span—i.e., a greater η—levels the
playing field by benefiting the non-specialized Bank B relatively more than the specialized Bank
A. The following proposition states our result.

Proposition 2. (Hardening soft information on equilibrium profits)

1. The equilibrium profits of the non-specialized lender πB are increasing in η. This implies
that there exists a cutoff η̂ so that when η > η̂ the credit market features a positive-weak
equilibrium with πB > 0.

2. In the region of positive-weak equilibrium, the impact of η on Bank B’s profits dominates that
on Bank A’s profits:

dπB

dη
>

d

dη
E
[
πA
]

. (33)

We start by explaining the underlying mechanism of point 2) in Proposition 2, which reveals
interesting economics. The two lenders’ equilibrium profits can be decomposed in two terms,
depending on whether banks are competing for the lender, as follows.

E[πA] =
∫ 1

0
πA
(
rA (s) , s

)
ds =

∫ ŝ

0

[
πA (r, s)

]+
ds︸ ︷︷ ︸

non-competing case

+
∫ 1

ŝ
πA
(
rA (s) , s

)
ds︸ ︷︷ ︸

compete against Bank B

, (34)

πB =
∫ r

r
πBdF B (r) = πB ·

[
1 − F B(r−)

]
︸ ︷︷ ︸

non-competing case

+
∫ r

r
πB (r)︸ ︷︷ ︸

constant πB

sA (r) ϕ
(
sA (r)

)
qs

(
−sA′ (r)

)
dr

︸ ︷︷ ︸
compete against Bank A

. (35)

Note, (34) takes πA
(
rA (s) , s

)
in (14) as given which includes the density ϕ(s) already, and (35)

uses the expression of equilibrium F B (r) in (19). The second term in both equations represents
profits when lenders engage in direct competition by offering interest rates r ∈ [r, r). Since ds =[
−sA′ (r)

]
dr, we should compare the integrand πB

(
rA (s)

)
sϕ(s)

qs
against πA

(
rA (s) , s

)
, where the

adjustment of sϕ(s)
qs

for πB reflects Bank B’s equilibrium probability density (i.e., F B′ (r) = sϕ(s)
qs

).
The above discussion motivates us to study the following object which is the difference of

integrands in (34)-(35):

∆π (s; η) ≡ πB
(
rA (s)

) sϕ (s)
qs

− πA
(
rA (s) , s

)
. (36)

We aim to show that for every s, we have d∆π(s;η)
dη > 0, i.e., the impact of η on density-adjusted πB

always dominates that of πA. Suppose that this holds; then because in a positive-weak equilibrium
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the first non-competing term in (34) is zero for Bank A, it follows that 0 = dπB/dη > dE
[
π̃A
]

/dη,
which is our desired claim.19 Note, as we can show that the dominance holds point-wisely, it is
stronger than the statement on expectation in point 2) in Proposition 2.

The key observation is that, in equilibrium, both lenders make the same revenue but face
different costs (i.e., the probability of lending). Specifically, we have

πA
(
rA (s) , s

)
=
{[

1 − F B
(
rA(s)

)]
pHH (s) µHH (s) + pHL (s) µHL (s)

}
︸ ︷︷ ︸

borrowers who repay

(
1 + rA (s)

)

−
{

pHH (s)
[
1 − F B

(
rA(s)

)]
+ pHL (s)

}
︸ ︷︷ ︸

lending amount

, (37)

πB
(
rA (s)

) sϕ (s)
qs

=sϕ (s)
qs

[∫ s

0
pHH (t) µHH (t) dt + pLHµLH

]
︸ ︷︷ ︸

borrowers who repay

(
1 + rA (s)

)
− sϕ (s)

qs

[∫ s

0
pHH (t) dt + pLH

]
︸ ︷︷ ︸

lending amount

.

(38)

In the proof of Proposition 2, we show that the first terms in both Eqs. (37) and (38) are equal given
the equilibrium strategy F B(·) in (19) and joint probability for a good borrower in (13). Therefore
the profit differential between Bank A and Bank B, which can proxy for the competitiveness of the
credit market, is given by

∆π(s; η) = 1
qs

[
sϕ (s)

∫ s

0
pHH (t) dt − pHH (s)

∫ s

0
tϕ (t) dt

]
+
[

sϕ (s)
qs

pLH − pHL (s)
]

. (39)

As can be seen from Eq. (39), the degree of competition depends on the span of hard information
η only through the banks’ lending probability. As explained in Eq. (30) in Section 4.1, η does not
affect the probability of lenders receiving opposite hard signals, captured by the second term in
parentheses in Eq. (39). Hence, the effect of η is captured by the change in the probability of HH

where both lenders receive positive hard signals and (potentially) compete for the borrower.
In addition, the information span η does not affect the probability of making loans to a good

borrower. To see this, recall that conditional on a good borrower, the probability of receiving
a favorable hard signal H (screening) is independent of the span of characteristics assessed but
determined by the precision. Competition is not affected either, as hard and soft signals are
conditionally independent given the good type (see footnote 17), and the equilibrium Bank B’s
strategy F B (·) in Eq. (19) does not rely on η. Therefore, η does not affect the type I error but
affects the competitiveness of the credit market through the type II error.

More specifically, broader hard information (higher η) reduces Type II errors—i.e., making
loans to a bad borrower—when both banks compete (HH). As η increases, hard signals assess

19The total effect of dπB/dη should also take into account the first non-competing term for Bank B; but point 1)
in Proposition 2 shows that this term is positive.
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more characteristics for both lenders and the event HH indicates that the overall borrower quality
is more likely to be good, thereby reducing Type II errors (Pr (θ = 1|θh = 1) is higher). This
improvement is more pronounced for the non-specialized lender, Bank B, which is initially subject
to more serious Type II errors. In the case of competition (HH), Bank B suffers from the winner’s
curse due to its opponent’s soft signal, i.e., winning indicates that Bank A’s soft signal is low
t ∈ (0, s). However, as the information span increases, the competition event HH indicates that
the opponent’s soft signal is more likely to be associated with good fundamentals, which attenuates
Bank B’s concern about the winner’s curse. In sum, hardening soft information helps Bank B avoid
lending to lemons more than it helps Bank A, which has information about these states through
its soft signal.

Hence, the span of hard information η affects the level of lender profits as summarized in point
1) in Proposition 2. When the information span is limited (η < η̂), Bank A maintains a substantial
information advantage and enjoys local monopoly power (bidding r when s ∈ (x, ŝ)), which enables
it to compete aggressively even though broader hard information benefits the opponent more. In
this range, Bank B’s equilibrium profits stay at zero as heightened competition exactly offsets the
gains from technology. Once η rises above the threshold η̂, Bank A’s information advantage shrinks
to the extent that it loses the local monopoly power and becomes the break-even lender when
receiving ŝ (η). In this case, Bank A competes less aggressively in response to the technological
advancement and so Bank B starts to make positive profits.

Information Precision and Bank Profits

The economic implications of changes in information precision in our model are drastically different
from those coming from changes in the span of hard information. Two parameters capture the
information precision, one being the hard signal precision α and the other the soft signal precision
τ . It is quite transparent that an increase in the soft signal precision gives a greater advantage to
the specialized lender, opposite to the effect of a greater η which levels the playing field for the
non-specialized lender.

The effect of a hard signal precision α is a bit more involved and in general non-monotone. To
understand the non-monotonicity, it is useful to consider two extreme cases. In a general auction
setting with asymmetric bidders, the uninformed bidder makes zero profit as shown in Milgrom
and Weber (1982). When α = 0.5 so that the hard signal is completely uninformative,20 the model
is identical to Milgrom and Weber (1982) where the uninformed lender B ignores the realization of
hB, randomizes its bids, and makes zero profit in equilibrium. On the other extreme when α = 1,
hard information becomes a public signal and we are back to Milgrom and Weber (1982) again
upon the realization hA = hB = H and updated prior, and Bank B still makes zero profits in this

20Although this limiting case violates Assumption 1 which requires hard signals to be sufficiently strong, we have
a well-defined equilibrium in this case where both lenders ignore the hard signals.
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limiting case. In general, for intermediate values of α ∈ (0, 1), a positive-weak equilibrium (with
πB > 0) could arise.

This non-monotonicity with respect to α, compared to the monotonicity with respect to η shown
in Proposition 2, implies that information precision is qualitatively different from information span.
The following proposition provides a formal counterpart of Proposition 2 in the vicinity of α = 1. We
focus on this extreme case not only because it is more analytically tractable but more importantly
because our analysis rests on the assumption of hard signals being decisive (Assumption 1).

Proposition 3. (Hard information precision on bank profits) When the precision of hard informa-
tion α → 1.

1. The equilibrium profit of non-specialized lender πB → 0, i.e., a zero-weak equilibrium arise.

2. Suppose that qh > 0.5. In the vicinity of α → 1, the impact of α on Bank A’s profit dominates
that on Bank B’s profit:

d

dα
E
[
πA
]

>
dπB

dα
= 0. (40)

In the above proposition, point 1) naturally follows from Milgrom and Weber (1982) given the
discussion above. Point 2) makes a further theoretical point: in the vicinity of α = 1, an increase in
hard signal precision helps Bank A gain more profits. To see this, following the same calculation in
(37)-(38), we reach the same profit wedge as in (39), where the first term captures the profit wedge
for HH when lenders compete.21 Suppose the hard fundamental prior qh > 0.5 is relatively high,
which is empirically relevant.22 When hard signals become more precise so α increases, lenders are
more likely to compete (hA = hB = H) than disagree and not compete (hA ̸= hB). Since Bank A

is endowed with an additional soft signal and hence more advantageous in the case of competition,
its profits increase as α increases.

Figure 4 displays the same variables as Figure 2, plotting the comparative statics on the hard
signal precision α. First, Panels A and B illustrate lenders’ equilibrium pricing strategies, showing
that lenders set more aggressive rates (lower rates) for α+ > α0. When α increases from α+ = 0.8
to α0 = 0.9, both lenders are competing more fiercely by quoting lower interest rates, so the
equilibrium turns from a positive-weak one to a zero-weak one (this is why we call the larger α

as α0). However, as demonstrated in Panel D, the non-specialized lender B’s profits πB is non-
monotone in α. This aligns with the discussion preceding Proposition 3, that πB = 0 at the two
limiting cases, α = 1

2 and α = 1. In Panel C, the cutoff strategies of Bank A generally decrease as
α increases; this reflects the standard learning effect—Bank A, receiving a more accurate positive

21Strictly speaking this term is for s ≥ ŝ only; but the the same logic applies to s ∈ (ŝ, x) where Bank A quotes r
always. Also, the second term on opposite hard signals matters; but in the proof of Proposition 3 we show that the
effect on HH dominates.

22This parameter is empirically relevant because, in the data, the non-performing loan rate—which is about 5% as
documented in Blickle, He, Huang, and Parlatore (2024)—is quite low.
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Figure 4: Equilibrium strategies and profits for hard signal precision α. Panel A depicts rA(s)
as a function of s and Panel B plots F B′(r) as a function of r; strategies for α+ = 0.8 are depicted in red
with markers while strategies with α0 = 0.9 are depicted in blue. Panel C depicts Bank A’s thresholds
ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits for two lenders, both as a
function of α. Parameters: r = 0.36, qh = 0.8, qs = 0.9, η = 0.02, and τ = 1.

signal, withdraws at a weaker soft signal. Notably, ŝ and x coincide for mid-values of α, which is
consistent with the non-monononicity of πB.

4.3 Credit Allocation and Welfare

We now analyze the effect of the hardening of soft information on the allocation of credit and
welfare through the lens of our model. We focus on three aggregate markers of credit market
health: loan approval rate, non-performance rate, and probability of funding for high- and low-
quality borrowers. We also investigate the expected NPV of a funded project as a measure of total
welfare in the banking sector. Figure 5 shows these equilibrium outcomes as a function of the span
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of hard information η.
Two effects govern the comparative statics in Figure 5. On the one hand, an increase in η

decreases the probability of getting a positive hard signal as there are more fundamental states
covered by the hard signal and any one of them failing makes the loan quality low. On the other
hand, the higher the span of hard information the higher the correlation between the hard signals
and the soft signal received by the specialized bank, which tilts the distribution of the soft signal
conditional on both banks competing, ϕ (s|HH), towards higher signals. This implies that as η

increases, the non-specialized lender knows that when there is competition its specialized opponent
is more likely with high soft signals, leading to an attenuated winner’s curse for the non-specialized
bank.

Panel A depicts the expected loan approval rates for two lenders. There, the change in the
conditional distribution of the soft signal for Bank A dominates the decrease in the probability
of getting a positive hard signal and hence, the expected loan approval of Bank A (solid line)
increases in η. For Bank B, the effect of an increase in η on its approval rate (dashed line)
depends on whether it makes zero or positive profits in equilibrium. In a zero-weak equilibrium,
the reduction in the winner’s curse for Bank B increases the likelihood of Bank B competing for the
borrower after receiving a positive hard signal, pushing the approval rate upwards. In a positive-
weak equilibrium, Bank B always participates and the effect of a lower winner’s curse is dampened.
In Panel A, the effect of η on the winner’s curse for Bank B dominates for values of η < 0.03
(zero-weak) while the opposite holds for η > 0.03 (positive-weak). The jump in Bank B’s loan
approval rate when switching from a zero-weak to a positive-weak equilibrium mirrors the jump in
Bank B’s participation upon receiving hB = H, which goes from being less than one when πB = 0
to being one when πB > 0.

Panel B shows the non-performing rates of loans made by Bank A (solid line) and Bank B

(dashed line). As one may have expected, the non-performing rate for both banks decreases with
the information span (within one equilibrium type). A higher information span improves the
screening technology of the banks (reduces Type II errors) and increases the average quality of
the loans in the banks’ portfolios. The jump in the non-performing rate of Bank B follows from
the jump in Bank B’s participation upon receiving a positive hard signal when the equilibrium
switches from zero-weak to positive-weak (and starts quoting r in point mass). Consequently,
Bank B’s incremental borrowers are of relatively low quality because it only wins competition
when the opponent receives low soft signals s < ŝ.

Panel C plots the probability of good (solid line) and bad (dashed line) borrowers receiving
funding in equilibrium. Without any strategic concerns, one would expect that a higher η improves
lenders’ screening technologies and so the probability of funding good loans rises while the prob-
ability of making a bad loan falls. This is indeed the case in Panel C when the equilibrium is in
the positive-weak regime for η > 0.03. In a zero-weak equilibrium, there is an additional effect
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Figure 5: Credit allocation and welfare. Panel A and Panel B show the expected loan approval and
non-performing rates, respectively. The solid lines correspond to Bank A while the dashed lines correspond
to Bank B. Panel C depicts the probability of getting funded for a high-quality borrower (solid line) and
a low-quality borrower (dashed line). Panel D illustrates aggregate welfare (solid line), borrower surplus
(dashed line), and lender profits. All variables are depicted as a function of the span of hard information
η Parameters: r̄ = 0.36, qh = 0.8, qs = 0.9, τ = 1 (top two panels) and αu = αd = α = 0.7 (bottom two
panels).

that tends to make bad loans more likely to be funded as the span of hard information increases.
As discussed above, a higher η attenuates the winner’s curse, and Bank B’s participation upon
receiving a positive hard signal increases, leading to a greater probability of Bank B extending
loans to good and bad borrowers. In the figure, this effect dominates and the probability of bad
loans being funded increases with η for η < 0.03. The jumps in the figures follow from the jump in
Bank B’s participation as mentioned when discussing Panels A and B above.

Panel D shows aggregate welfare measured as the expected net present value (NPV) of a funded
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project, as well as the surplus to each agent in this sector. As the span of hard information increases
and the banks’ Type II errors decrease, the expected quality and the NPV of the loans made by
banks go up. Note, welfare is continuous in η when we switch from a zero-weak to a positive-weak
equilibrium; this is because, at the knife-edge parameter of equilibrium type switching, both Bank
B and the borrower make zero profits.23 Hence, despite a jump in quantity, these additional loans
correspond to zero NPV projects on average, and therefore total welfare increases continuously as
the span of information widens.

In general, borrowers benefit from the technological improvement of broader hard information.
As lender screening becomes more efficient and competition intensifies, good-type borrowers are
more likely to be funded (Panel C) and receive lower rates. (We normalize the surplus of bad-type
borrowers to zero).24 When η < η̂ = 0.03, the equilibrium is zero-weak and Bank A’s expected
profits decrease according to Proposition 2. In this case, the improvement in total welfare all
accrues to borrowers, and there is additional transfer from banks to borrowers. When η ≥ 0.03,
the equilibrium is positive-weak and Bank B also enjoys a higher surplus from an increase in the
information span η.

Finally, recall that in Panel D of Figure 5, all welfare goes up except the specialized Bank A

in the range of positive-weak equilibrium. Is it possible that an increase in information span leads
to a Pareto improvement for all agents in this sector? The answer is yes. As shown in Panel B of
Figure 3 in Section 4.1, Bank A’s profits could also increase in information span. Highlighting the
feature that we directly model technology improvement, both the specialized and nonspecialized
lenders enjoy the same technology improvement, especially when signal precisions before hardening
soft information are low. As a result, broader hard information, which is an important form of
information technology improvement in the recent decade, leads to a Pareto improvement of all
sectors and everyone enjoys a higher surplus.

5 Model Extensions and Discussions

In this section, we consider several model extensions. First, the open banking initiative (He, Huang,
and Zhou, 2023) implies that lenders’ hard information signals are likely to become more and more
correlated; our model can be easily adapted to incorporate this aspect of change in information
technology. Second, so far we have adopted one particular hard information technology as illus-
trated in Figure 1. As robustness, we explicitly model the signal on hardened soft fundamental θh

s

(potentially generated by Big Data technology) and show that both the equilibrium characterization
23The discrete jump of loans is made with a rate of r, so that borrowers receive no surplus from these loans. Recall

we rule out non-pledgeable income of borrowers; otherwise, there will be an upward jump in total welfare which
includes the borrower’s non-pledgeable income.

24See He, Huang, and Zhou (2023) for an analysis that includes the welfare of both good and bad types of borrowers
in the context of open banking regulation.
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Figure 6: Equilibrium strategies and profits for hard signal correlation ρh. Panel A depicts rA(s)
as a function of s and Panel B plots F B′(r) as a function of r; strategies for ρh+ = 0.6 are depicted in
red with markers while strategies with ρh0 = 0 are depicted in blue. Panel C depicts Bank A’s thresholds
ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits for two lenders, both as a
function of ρh. Parameters: r = 0.45, qh = 0.8, qs = 0.9, η = 0, α = 0.7, and τ = 1.

and the key economic takeaways are robust to this alternative modeling of the hard information
technology.

5.1 Correlated Hard Signals

Another widely acknowledged aspect of information technology advancement is that the lenders’
hard information signals become more correlated. For example, the open banking regulation enables
sharing financial data with potential lenders under customer consent (He, Huang, and Zhou, 2023;
Babina, Buchak, De Marco, Foulis, Gornall, Mazzola, and Yu, 2022), and as a result, lenders’
assessments become more alike. In this section, we extend our model to capture this effect and
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show that making signals more “public” and hardened soft information have different effects on the
equilibrium in the credit market.

To further illustrate the potentially different aspects of information technology advancement,
we extend our model to allow for correlated hard signals as follows. With probability ρh ∈ [0, 1]
lenders receive the same binary signal realization hc ∈ {H, L}, while with probability

(
1 − ρh

)
each

lender receives an independent binary hard signal. This captures the recent technology trend that
the lenders’ hard information signals become increasingly correlated; for instance, open banking
regulation studied in He, Huang, and Zhou (2023) and Babina, Buchak, De Marco, Foulis, Gornall,
Mazzola, and Yu (2022). We provide a detailed analysis of this extension in Appendix A.5.

Panels C and D in Figure 6 provide comparative statics with respect to the correlation ρh ∈ [0, 1]
of hard signals across two lenders. We observe in the bottom two panels on Figure 6 that a larger
ρh leads to a zero-weak equilibrium more likely to occur. In the extreme case in which ρh = 1,
the hard signal becomes a public signal, and Bank B who becomes effectively uninformed ends up
with zero profit (Milgrom and Weber, 1982, as discussed in Section 4.2). From this perspective, it
is interesting to observe that the economic implications of ρh, which is more about data sharing,
are qualitatively similar to that of changes in signal precision studied in Section 4.2 but opposite
to information span highlighted in this paper.

5.2 Signal on Hardened Soft Fundamental θh
s

Information technology corresponds to mappings from some fundamental states to signals, and
as usual, there are potentially important modeling choices in specifying the details of the (hard)
information technology. As illustrated in the top panel of Figure 1, we have adopted a technology
that takes the entire hard fundamental θs as input and produces a binary signal as output. However,
this is not the only way to do this in a setting with multi-dimensional fundamental states. More
specifically, given our hard fundamental θh = θh

s θs
s, another natural way to model “hardening soft

information” is to keep the original hard and soft signals (hA, hB, and s) the same, introduce
additional signals of the hardened soft fundamental θh

s , and study the impact of these additional
signals on credit market equilibrium.

Denote by hj
s the lender j’s signal of θs

h. We call it hardened soft signal, which takes a binary
value with hj

s ∈ {H, L}. For traceability, we assume that they are also decisive just as in Section
2.4, so that both lenders reject the borrower if hj

s = L.
We can generally allow for any correlation ρh

s between two hardened soft signals, as modeled in
Section 5.1. For illustration purposes, however, we assume that ρh

s = 1; essentially, the hardened
soft signal becomes public. More specifically, we assume hA

s = hB
s = hc

s where hc
s takes a value of H

(L) with probability αs ∈ (1
2 , 1) conditional on θh

s = 1 (θh
s = 0). In practice, the signals generated by

Big Data technology are indeed increasingly correlated across users, and this assumption captures
this trend in its stark form. In fact, in the limiting case αs → 1, hj

s which reveals θh
s perfectly will
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be the same across two lenders for any ρh
s . Appendix A.6 provides a full analysis for any general

ρh
s , following the same framework as in Section 5.1.

That hA
s = hB

s = hc
s is public, together with the assumption that hj

s’s are decisive, simplifies the
analysis greatly. Conceptually, because lenders understand that they compete only when hc

s = H

which is informative about the hardened soft fundamentals θh
s , this changes the effective distribution

of soft signal s to ϕ (s|hc
s = H). This in turn affects the credit market equilibrium outcome.

Similar to Section 3.1, we introduce pHHH (t) ≡ P
(
hA = H, hB = H, hc

s = H, s ∈ ds
)

as the
joint probability of all three hard signals (hA, hB, hc

s) being H and the soft signal s falling in the
interval (s, s + ds); we can define analogously pHLH (s), and finally pLHH (t) the joint probability
of
{

hA = L, hB = hc
s = H

}
. Then, Bank B’s lending profits when quoting r and hB = hB

s = H, is
similar to (16):

πB (r) =
∫ sA(r)

0
pHHH(t)︸ ︷︷ ︸

hA=hB=hc
s=H,t

[µHHH (t) (r + 1) − 1] dt + pLHH︸ ︷︷ ︸
hA=L,hB=hc

s=H

[µLHH (r + 1) − 1] . (41)

And, Bank A’s profit when quoting r and
{

hA = H, hA
s = H, s

}
is similar to (14):

πA (r, s) = pHHH(s)︸ ︷︷ ︸
hA=hB=hc

s=H,s

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHH(s) (1 + r) − 1] + pHLH(s)︸ ︷︷ ︸
hA=hc

s=H,hB=L,s

[µHLH(s) (1 + r) − 1] .

(42)

In Appendix A.6 we show that the above profits are isomorphic (up to a constant) to those
in Blickle, He, Huang, and Parlatore (2024) with independent fundamentals (and signals), once
we replace the relevant distributions—say θs = 1 or s—to be those conditional on hc

s = H. As a
result, we can derive similar analytical characterizations of the credit market equilibrium under the
alternative modeling.

More importantly, the alternative modeling of hardened soft signal delivers quite similar eco-
nomics as in our baseline. In Section 4.1 we have illustrated that the key mechanism of hardening
soft information is to help the non-specialized lender avoid the winner’s curse given a low Bank
A’s soft signal. Under the alternative modeling, one can calculate the distribution of soft signal
conditional on positive realization of hc

s, i.e.,

ϕ (s|hc
s = H) = ϕ0 (s) +

↑ in η as αs> 1
2︷ ︸︸ ︷

αs

αs − (2αs − 1) η
·qs [ϕ1 (s) − ϕ0 (s)] . (43)

Comparing it to ϕ
(
s|hA = hB = H

)
in Eq. (28), the only difference arises from the perfectly

correlated hardened soft signal hc
s here versus the conditionally independent hA, hB in the baseline
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(once their information about θh
h is shut down). Essentially, observing a positive (public) hardened

soft signal helps both lenders update the belief about s upward, therefore reducing the winner’s
curse. This economic insight is robust even if the hardened soft signal is independent (conditional
on θh

s ).

6 Concluding Remarks

One of banks’ main roles in the economy is producing information to allocate credit. In this paper,
we show that the nature of the banks’ information technology affects the credit market equilibrium
and the degree of competition among banks. More specifically, we explore how the recent trend
in Big Data technology that transforms qualitative or subjective assessments into quantifiable and
objective metrics, known as hardening soft information, affects credit market outcomes in the
presence of specialized lenders.

It is important to note that a priori, the significant advance in information technology should
benefit all lenders, including specialized and established banks as well as non-specialized lenders
and new fintech challengers; in fact, large banks might front-run in their IT investment in the
past decade (He, Jiang, Xu, and Yin, 2023). However, the fast-growing empirical literature on
fintechs (see, e.g. Berg, Fuster, and Puri, 2022) seem to suggest that the new technology has
helped relatively weaker (fintech) lenders to catch up, intensifying the credit market competition.

We build a novel model with asymmetric lenders but symmetric technology improvement to
study information span, and its implications on credit market competition. Our model highlights
the crucial difference between information span, which captures “breadth” of data, and signal
precision, which captures the “quality” of data. This distinction is crucial in understanding the
changing landscape in the credit market due to technological advances related to data gathering and
processing that lead to the hardening of soft information. Our theory clarifies that it is enlarging
the information span, not the mere improvement of “signal precision,” that can deliver the desired
empirical pattern in a robust way; in fact, the former tends to reinforce the position of specialized
lender while the latter serves the role of “leveling the playing field.”
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A Technical Appendices

A.1 Credit Competition Equilibrium

Proof of Lemma 1

Proof. Note that the property of no gap implies common support [r, r], because if a bank’s interest
rate offering has a larger lower bound or a smaller upper bound interest rate than its competitor’s,
this is one example of gaps in the first bank’s support.

To show that the distributions have no gap, suppose that, say, the support of F B has a gap
(r1, r2) ⊂ [r, r].25 Then F A should have no weight in this interval either, as any rA (s) ∈ (r1, r2)
will lead to the same demand for Bank A and so a higher r will be more profitable. At least one
lender does not have a mass point at r1 (it is impossible that both distributions have a mass point
at r1), under which its competitor has a profitable deviation by revising r1 to r ∈ (r1, r2) instead.
Contradiction.

Regarding point mass, suppose that one distribution, say F B has a mass point at r̃ ∈ [r, r).
Then Bank A would not quote any rA (s) ∈ [r̃, r̃ + ϵ] and it would strictly prefer quoting rA = r̃ − ϵ

instead. In other words, the support of F A must have a gap in the interval [r̃, r̃ + ϵ]. This contradicts
the property of no gaps which we have shown. Finally, it is impossible that both distributions have
a mass point at r.

A.2 Proof of Proposition 1

Proof. This part proves that Bank A’s equilibrium interest rate quoting strategy as a function of
soft signal rA (s) is always decreasing; this implies that the FOC that helps us derive Bank A’s
strategy also ensures the global optimality.

Write Bank A’s value ΠA (r, s) as a function of its interest rate quote and soft signal, in the
event of hA = H and s. (We use π to denote the equilibrium profit but Π for any strategy.) Recall
that Bank A solves the following problem:

max
r

ΠA (r, s) = pHH (s)︸ ︷︷ ︸
hA=H,hB=H,s

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHH (s) (1 + r) − 1] + pHL (s)︸ ︷︷ ︸
hA=H,hB=L,s

[µHL (s) (1 + r) − 1]

(44)
25The same argument follows if the support of F A has a gap in the conjectured equilibrium, and then for Bank

B, any quotes within the gap lead to the same demand of the same posterior quality of customers, where Bank B
updates its belief from Bank A’s strategy.
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with the following FOC:

0 = ΠA
r (r (s) , s)

= pHH (s)
[
−dF B (r)

dr

]
︸ ︷︷ ︸

lost customer

[µHH (s) (1 + r) − 1]︸ ︷︷ ︸
customer return

+ pHH (s)
[
1 − F B (r)

]
︸ ︷︷ ︸

customer

µHH (s)︸ ︷︷ ︸
MB of customer

+pHL (s) µHL (s) .

(45)

One useful observation is that on the support, it must hold that µHH (s) (1 + r)−1 > 0; otherwise,
µHL (s) (1 + r) − 1 < µHH (s) (1 + r) − 1 ≤ 0, implying that Bank A’s profit is negative (so it will
exit).

Lemma 2. Consider s1, s2 in the interior domain with corresponding interest rate quote r1 and
r2. The marginal value of quoting r2 for type s = s1, i.e. ΠA

r (r2, s1), has the same sign as s2 − s1.

Proof. Evaluating the FOC of type s1 but quoting r2:

ΠA
r (r2, s1) =pHH (s1)

[
−dF B (r2)

dr

]
[µHH (s1) (1 + r2) − 1]

+ pHH (s1)
[
1 − F B (r2)

]
µHH (s1) + pHL (s1) µHL (s1) . (46)

FOC at type s2 yields

0 = ΠA
r (r2, s2) =pHH (s2)

[
−dF B (r2)

dr

]
[µHH (s2) (1 + r2) − 1]

+ pHH (s2)
[
1 − F B (r2)

]
µHH (s2) + pHL (s2) µHL (s2) ,

or
dF B (r2)

dr
=

pHH (s2)
[
1 − F B (r2)

]
µHH (s2) + pHL (s2) µHL (s2)

pHH (s2) [µHH (s2) (1 + r2) − 1]
. (47)

Plugging in this term to (46), ΠA
r (r2, s1) becomes

ΠA
r (r2, s1) =

[
ϕ1 (s1) − pHH (s1)

pHH (s2)
· µHH (s1) (1 + r2) − 1

µHH (s2) (1 + r2) − 1
· ϕ1 (s2)

] {
pHHµHH

[
1 − F B (r2)

]
+ pHLµHL

}
= pHH (s1) ϕ1 (s2) − ϕ1 (s1) pHH (s2)

pHH (s2) [µHH (s2) (1 + r2) − 1]

{
pHHµHH

[
1 − F B (r2)

]
+ pHLµHL

}
, (48)

where phAhB ≡ P
(
hA, hB

)
, µhAhB ≡ P

(
θ = 1

∣∣∣hA, hB
)

are defined in Section 3.1 and ϕ1 (s) ≡
ϕ (s |θs = 1) = sϕ(s)

qs
is the conditional density of soft signal (also ϕ0 (s) ≡ ϕ (s |θs = 0) = (1−s)ϕ(s)

qs
).

Hence, the sign of ΠA
r (r2, s1) depends on pHH (s1) ϕ1 (s2) − pHH (s2) ϕ1 (s1) because the denomi-
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nator is positive as we noted right after Eq. (45).
Last, we argue that the sign of pHH (s1) ϕ1 (s2)−pHH (s2) ϕ1 (s1) depends on s2 −s1. Note that

the event HH correlates with the soft signal s only via θh
s which affects θs, we have

pHH (s) = P (θs = 1, HH) ϕ1 (s) + P (θs = 0, HH) ϕ0 (s) ,

i.e., two positive hard signals HH are no longer informative about the soft signal s once we condition
on the soft state θs. Using this observation,

pHH (s1) ϕ1 (s2) − pHH (s2) ϕ1 (s1) = P (θs = 0, HH) ϕ0 (s1) ϕ0 (s2)
[

ϕ1 (s2)
ϕ0 (s2)

− ϕ1 (s1)
ϕ0 (s1)

]
, (49)

which shares the same sign as s2 − s1.

Lemma 2 has three implications. First, as long as rA (·) is (strictly) increasing in some segment,
then Bank A would like to deviate in this segment. To see this, suppose that r1 > r2 when s1 > s2

for s1, s2 arbitrarily close. Because Lemma 1 has shown that Bank A’s strategy is smooth, r2 is
arbitrarily close to r1. Then ΠA

r (r2, s1) < 0, implying that the value is convex and the Bank A at
s1 (who in equilibrium is supposed to quote r1) would like to deviate further.

Second, the monotonicity implied by Lemma 2 helps us show that Bank A uses a pure strategy.
To see this, for any s1 > s2 that induce interior quotes r1, r2 ∈ [r, r), however close, in equilibrium
we must have sup rA(s1) < inf rA(s2) by monotonicity. Combining this with Part 3 of Lemma 1,
i.e., the induced distribution F A(·) is atomless except for at r and has no gaps, we know that Bank
A must adopt a pure strategy in the interior of [r, r), or for s ≤ ŝ. Finally, the following argument
shows pure strategy for s < ŝ: i) randomize over s = 0 is a zero-measure set; and ii) on s > ŝ

Bank A can either quote r or ∞, which, generically, gives different values (and hence rules out
randomization).

Third, if rA (·) is decreasing globally over S, then the FOC is sufficient to ensure global opti-
mality. Consider a type s1 who would like to deviate to ř > r1; then

ΠA (ř, s1) − ΠA (r1, s1) =
∫ ř

r1
V A

r (r, s1) dr.

Given the monotonicity of r (s), we can find the corresponding type s (r) for r ∈ [r1, ř]. From
Lemma 2 we know that

ΠA
r (r, s1) ∝ ϕ1 (s (r))

ϕ0 (s (r))
− ϕ1 (s1)

ϕ0 (s1)

which is negative given s (r) < s1. Therefore the deviation gain is negative. Similarly, we can show
a negative deviation gain for any ř < r1.

Next we show that rA (·) is single-peaked over the space of S = [0, 1].
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Lemma 3. Given any exogenous πB ≥ 0, rA (·) single-peaked over S = [0, 1] with a maximum
point.

Proof. When r ∈ [r, r), the derivative of rA (s) with respect to s is

drA (s)
ds

=

pHHϕ (s)


M1(s)<0,andM ′

1(s)<0︷ ︸︸ ︷∫ s

0
pHH (t) [µHH (t) − µHH (s)] dt +

M2(s)?0, butM ′
2(s)<0︷ ︸︸ ︷

pLHµLH −
(
πB + pLH

)
µHH (s)


(
∫ s

0 pHH (t) · µHH (t) dt + pLHµLH)2 .

As µHH (t) < µHH (s) for t ∈ [0, s), the first term in the bracket M1 (s) < 0, and

M ′
1 (s) = −∂µHH (s)

∂s

∫ s

0
pHH (t) dt < 0.

For M2 (s) = pLHµLH −
(
πB + pLH

)
µHH (s), it has an ambiguous sign, but is decreasing in s.

This implies that M1 (s) + M2 (s) decreases with s. It is easy to verify that M1(0) + M2(0) > 0 and
M1(1)+M2(1) < 0. Therefore rA(s) first increases and then decreases, therefore single-peaked.

Suppose that the peak point is s̃; then Bank A should simply charge r (s) = r̃ for s < s̃ for
better profit. This is the standard “ironing” technique and we therefore define the following ironed
strategy formally (here, we also take care of the capping r ≤ r):

rA
ironed (s) ≡ sup

t∈[s,1]
min

(
rA (t) , r

)
.

By definition rA
ironed (s) is monotone decreasing.

We now argue that in equilibrium, πB and r adjust so that rA (·) is always monotonely decreasing
over [x, 1]. (Since we define rA (s) = ∞ for s < x, monotonicity over the entire signal space [0, 1]
immediately follows.) There are two subcases to consider.

1. Suppose that r̃ = r. In this case, rA (s) = πB+
∫ s

0 pHH(t)dt+pLH∫ s

0 pHH(t)·µHH(t)dt+pLHµLH

−1 used in Lemma 2 and
3 does not apply to s < s̃ because the equation is defined only over the left-closed-right-open
interval [r, r) . Instead, rA (s) in this region is determined by Bank A’s optimality condition:
as rA does not affect the competition from Bank B (which equals F B (r−)), Bank A simply
sets the maximum possible rate rA (r) = r unless it becomes unprofitable (for s < x). (This
is our zero-weak equilibrium with πB = 0, and there is no “ironing” in this case.)

2. Suppose that r̃ < r; then bank A quotes r̃ for all s < ŝ. But this is not an equilibrium—Bank
A now leaves a gap in the interval [r̃, r], contradicting with point 3) in Lemma 1 (there, we
rule out gaps in equilibrium). Intuitively, Bank B always would like to raise its quotes inside
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[r̃, r] to r; there is no “ironing” in this case. (This is our positive-weak equilibrium with
πB > 0.)

Therefore, we have shown that Bank A uses a pure strategy rA (s) that decreases in s. Bank A’s
equilibrium strategy Eq. (18) is then derived from Bank B’s indifference condition.

Equilibrium strategy F B In this part, we derive equilibrium strategy taking πB and ŝ as given.
Bank A’s equilibrium strategy Eq. (18) in s ∈ [ŝ, 1] maximizes its profit and so satisfies the

following first order condition (FOC):

pHH (s)
(

−dF B (r)
dr

)
[µHH (s) (r + 1) − 1] +

{
pHH (s)

[
1 − F B (r)

]
µHH (s) + pHL (s) µHL (s)

}
= 0.

(50)

Bank B’s equilibrium quotes r ∈ [r, r) maximizes its expected profits and satisfy the following
FOC:

(
−sA′ (r)

)
pHH

(
sA (r)

)
︸ ︷︷ ︸

B’s additional borrowers

[µHH (s) (r + 1) − 1] =
∫ sA(r)

0
pHH (t) µHH (t) dt + pLHµLH︸ ︷︷ ︸

B’s existing borrowers

.

Plug this condition into Bank A’s optimality condition (50), and we have

(
−dF B (r)

dr

) ∫ sA(r)
0 pHH (t) µHH (t) dt + pLHµLH

−sA′ (r)
+ pHH(s)

[
1 − F B (r)

]
µHH(s) + pHL(s)µHL(s) = 0,

which could be rearranged as

− d

ds

{
1 − F B (r)∫ s

0 pHH (t) µHH (t) dt + pLHµLH

}
= −

d
ds {

∫ s
0 pHL(t)µHL(t)dt}

[
∫ s

0 pHH (t) µHH (t) dt + pLHµLH ]2
.

Using the conditional independence of signals, the right-hand-side of the above equation is

−
d
ds {

∫ s
0 pHL(t)µHL(t)dt}

[
∫ s

0 pHH (t) µHH (t) dt + pLHµLH ]2
= −

d
ds

{∫ s
0

pHL(t)µHL(t)
pHH(t)µHH(t)pHH (t) µHH (t) dt

}
[
∫ s

0 pHH (t) µHH (t) dt + pLHµLH ]2

= 1 − α

α

d

ds

{
1∫ s

0 pHH (t) µHH (t) dt + pLHµLH

}
.

Hence, Bank B’s equilibrium strategy satisfies the following key ordinary differential equation,

d

ds

[ 1−α
α + 1 − F B (r)∫ s

0 pHH (t) µHH (t) dt + pLHµLH

]
= 0, (51)
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so
pHHµHH

[
1 − F B (r)

]
+ pHLµHL∫ s

0 pHH (t) µHH (t) dt + pLHµLH

= K.

Using the boundary condition F B (r) = 0, we solve for the constant

K = pHHµHH + pHLµHL

pHHµHH + pLHµLH

= 1.

Therefore, for r ∈ [r, r), we have

F B (r) = 1 −
∫ s(r)

0 tϕ (t) dt

qs
,

and if πB > 0 (πB = 0), we have F B (r) = 1 (F B (r) = 1 −
∫ ŝ

0 tϕ(t)dt

qs
).

πB and boundary condition ŝ We define the following auxilary functions

π̂B
(
r; sA (r) = š

)
=
∫ š

0
pHH (t) [µHH (t) (r + 1) − 1] dt + pLH [µLH (r + 1) − 1] , (52)

which is Bank B’s profits when assuming that quoting rB = r wins Bank A of type s ∈ [0, š] in
competition (HH). We define sbe

B as the threshold where Bank B’s auxilary profits break even,

π̂B
(
r; sA (r) = sbe

B

)
= 0. (53)

In addition, we define the following auxilary profit function for Bank A,

π̂A
(

r, š; F B (r) =
∫ 1

š

sϕ (s)
qs

ds

)
=pHH (š)

∫ š

0

sϕ (s)
qs

ds︸ ︷︷ ︸
=1−F B(r)

[µHH (š) (1 + r) − 1] + pHL (š) [µHL (š) (1 + r) − 1] , (54)

which assumes that Bank A receiving soft signal š wins with probability
∫ š

0
sϕ(s)

qs
ds when quoting

r. We define sbe
A as the threshold where Bank A’s auxilary profits break even,

π̂A

(
r, sbe

A ; F B (r) =
∫ 1

sbe
A

sϕ (s)
qs

ds

)
= 0. (55)

First, we argue that equilibrium ŝ ≡ arg sups

{
s : rA (s) ≥ r

}
either equals sbe

A or sbe
B . To see

this, if πB = 0, we have ŝ = sbe
B by construction. If πB > 0, then Bank B always makes an offer
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upon H, i.e., F B (r) = 1. We also know that F B (r−) = 1 −
∫ sA(r)=ŝ+

0 tϕ(t)dt

qs
< 1, because Bank A

must reject the borrower when s realizes as close to 0 and ŝ > 0. Hence, F B (r) has a point mass at
r. It follows that F A (r) is open at r: ŝ = x and πA

(
rA (ŝ) |ŝ

)
= 0, which is exactly the definition

of sbe
A and so ŝ = sbe

A .
Now we prove the claim in this lemma. In the first case of sbe

B < sbe
A , we have ŝ ≤ sbe

A and

thus Bank A’s probability of winning when quoting rA = r is at most
∫ sbe

A
0 tϕ(t)dt

qs
≥
∫ ŝ

0 tϕ(t)dt

qs
=

1−F B (r−). The definition of sbe
A says that Bank A upon sbe

A breaks even when quoting rA
(
sbe

A

)
= r

and facing this most favorable winning probability
∫ sbe

A
0 tϕ(t)dt

qs
. Then upon a worse soft signal

sbe
B < sbe

A , Bank A must reject the borrower because offering r leads to losses, which rules out
ŝ = sbe

B . According to our earlier observation of ŝ = sbe
B or sbe

A , we have ŝ = sbe
A and πB > 0 in this

case, where πB is the same as Eq. (52).
In the second case of sbe

B ≥ sbe
A , we have ŝ ≤ sbe

B . When Bank B quotes rB = r, the marginal
type that Bank B wins over is at most sbe

B . The definition of sbe
B says that Bank B breaks even when

quoting rB = r and facing this most favorable winning probability at marginal type sbe
B . Then if the

competition from A were more aggressive, say the marginal type quoting rA = r is sbe
A ≤ sbe

B , Bank
B would make a loss when quoting r, so ŝ = sbe

A cannot support an equilibrium. Hence, in this
case, ŝ = sbe

B and πB = 0. From the definition of sbe
A , Bank A’s equilibrium break-even condition

0 = πA (r|x), and the fact that sbe
B ≥ sbe

A in this case, we have

0 =
∫ sbe

A
0 pHH (s) ds

qs

[
µHH

(
sbe

A

)
(1 + r) − 1

]
+ pHL

[
µHL

(
sbe

A

)
(1 + r) − 1

]
=
∫ sbe

B
0 pHH (s) ds

qs
[µHH (x) (1 + r) − 1] + pHL [µHL (x) (1 + r) − 1]

≥pHH
∫ sbe

A
0 tϕ (t) dt

qs
[µHH (x) (1 + r) − 1] + pHL [µHL (x) (1 + r) − 1] .

Hence, x ≤ sbe
A ≤ sbe

B = ŝ.

A.3 Proof of Proposition 2

Lemma 4. The break-even soft signals sbe
A and sbe

B defined in Eq. (55) and (53) satisfy

∂sbe
A

∂η
< 0,

∂sbe
B

∂η
< 0.

Proof. The definition of sbe
A or π̂A

(
r, sA

be;
∫ sA

be
0 tϕ(t)dt

qs

)
= 0 corresponds to an implicit function of η
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and sA
be,

π̂A (η, s) ≡ pHH (s)
∫ s

0 tϕ (t) dt

qs
[µHH (s) (1 + r) − 1] + pHL (s) [µHL (s) (1 + r) − 1]

=
∫ s

0 tϕ (t) dt

qs︸ ︷︷ ︸
soft info, indept of η

pHH (s) µHH (s)︸ ︷︷ ︸
Type 1, indept of η

(1 + r) − pHH (s)︸ ︷︷ ︸
decrease in η

+ pHL (s) µHL (s)︸ ︷︷ ︸
Type 1, indept of η

(1 + r) − pHL (s) .

We first analyze the key terms’ monotonicity in η. Note that the joint events of signal realizations
and good project (Type 1 error) is independent of η,

pHH (s) µHH (s) = qα2 · sϕ (s)
qs

,

pHL (s) µHL (s) = qα (1 − α) · sϕ (s)
qs

.

In addition, pHH (s) decreases with η as shown in Eq. (27). The remaining term pHL (s) is
independent of η as shown in Eq. (30).

Taken together,
∂π̂A (η, s)

∂η
> 0;

Combining with the fact that ∂π̂A(η,s)
∂s > 0, the implicit function theorem shows

∂sbe
A (η)
∂η

< 0.

Part 2. The definition of sbe
B corresponds to an implicit function

0 = π̂B (η, s) =
∫ s

0
pHH (t) [µHH (t) (r + 1) − 1] dt + pLH [µLH (r + 1) − 1] .

Similar as in the previous argument, Type I mistakes are constant in the span η due to the
multiplicative-characteristic setting:∫ s

0
pHH (t) µHH (t) dt = qα2Φ (s| θs = 1) = qα2 ·

∫ s
0 tϕ (t) dt

qs
,

pLHµLH = qα (1 − α) .

In addition, the probability of disagreement in hard signals is also independent of η as αA = αB,

pLH = α (1 − α) .
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The probability that Bank B wins in competition
∫ s

0 pHH (t) dt decreases with η.
Taken together, we have ∂π̂B(η,s)

∂η > 0. Combining with ∂π̂B(η,s)
∂s > 0, the implicit function

theorem implies that
∂sbe

B (η)
∂η

< 0.

Proof. First, we show that for s ∈ [ŝ, 1], we have

dπA (r (s) , s)
dη

<
d
[
πB (r (s)) sϕ(s)

qs

]
dη

(56)

or equivalently, ∆π (s; η) defined in Eq. (36) increases in η,

∂∆π (s; η)
∂η

=
qh

h

[
α2 − (1 − α)2

]
ϕ (s)

(1 − qs) qs

∫ s

0
(s − t) ϕ (t) dt > 0.

Second, we argue that η weakly increases Bank B’s profits

dπB

dη
≥ 0

and the inequality is strict if and only if πB > 0. When πB = 0, from

dπA (r (s) , s)
dη

< 0 =
d
[
πB (r (s)) sϕ(s)

qs

]
dη

, where s ∈ [ŝ, 1]

When πB > 0, ŝ = sA
be. From Lemma 4, for any η1 < η2,

ŝ (η1) = sA
be (η1) > sA

be (η2) = ŝ (η2) .

Then when η = η2, Bank A breaks even upon soft signal ŝ (η2) and makes profits upon a better
soft signal ŝ (η1), i.e.,

πA
(
rA (ŝ (η1)) , ŝ (η1) ; η2

)
> 0 = πA

(
rA (ŝ (η1)) , ŝ (η1) ; η1

)
.

Hence, broader information span from η1 to η2 increases Bank A’s profit conditional on soft signal
type ŝ (η1). This implies that Bank B should benefit more from broader hard information,

ŝ (η1) ϕ (ŝ (η1))
qs

[
πB (ŝ (η1) ; η2) − πB (ŝ (η1) ; η1)

]
> πA (r (ŝ (η1)) , ŝ (η1) ; η2)−πA

(
rA (ŝ (η1)) , ŝ (η1) ; η1

)
> 0.
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As Bank B makes a constant profit,

πB (η2) > πB (η1) .

This holds for any η1 < η2 when the resulting equilibrium is positive weak, so

dπB (η)
dη

> 0 (= 0)

if πB (η) > 0 (= 0) .

A.4 Proof of Proposition 3

Proof. First, we argue that Bank A benefits more when s ∈ [ŝ, 1], i.e. ∂∆π(s;α)
∂α

∣∣∣
α→1

> 0 in the
vicinity of α = 1. To see this,

∂∆π (s; α)
∂α

=
∫ s

0

[
sϕ (s)

qs

∂pHH (t)
∂α

− ∂pHH (s)
∂α

tϕ (t)
qs

]
dt +

[
∂pLH

∂α

sϕ (s)
qs

− ∂pHL (s)
∂α

]
.

Recall that

pHH (s) =

(1 − qh
h

)
︸ ︷︷ ︸

θh
h

=0

ϕ (s) + qh
h

(
1 − qh

s

)
︸ ︷︷ ︸

θh
h

=1,θh
s =0

ϕ0 (s)

 (1 − α)2 +

qh
hqh

s (1 − qs
s)︸ ︷︷ ︸

θh
h

=θh
s =1,θs

s=0

ϕ0 (s) + q︸︷︷︸
θ=1

ϕ1 (s)

α2,

and then

∂pHH (s)
∂α

= −2 (1 − α)
[(

1 − qh
h

)
ϕ (s) + qh

h

(
1 − qh

s

)
ϕ0 (s)

]
+ 2α

[
qh

hqh
s (1 − qs

s) ϕ0 (s) + qϕ1 (s)
]

.

Hence, when α → 1, we have

sϕ (s)
qs

∂pHH (t)
∂α

− ∂pHH (s)
∂α

tϕ (t)
qs

→ 2αqh
hqh

s (1 − qs
s) (ϕ1 (s) ϕ0 (t) − ϕ0 (s) ϕ1 (t)) .

In addition,
∂pLH

∂α

sϕ (s)
qs

− ∂pHL (s)
∂α

= (1 − 2α)
[

sϕ (s)
qs

− ϕ (s)
]

.

Using these terms, we have

∂∆π (s; α)
∂α

∣∣∣∣
α→1

= 2qh
hqh

s (1 − qs
s)

qs (1 − qs)
ϕ (s)

∫ s

0
(s − t) ϕ (t) dt −

[
sϕ (s)

qs
− ϕ (s)

]
.
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Under the primitive condition of 2qh
hqh

s (1−qs
s)

1−qs
> 1,

∂∆π (s; α)
∂α

∣∣∣∣
α→1

>

∫ 1

ŝ
ϕ (s)

[ 1
qs

∫ s

0
(s − t) ϕ (t) dt −

(
s

qs
− 1

)]
ds.

For the integrand, note that when s = 1,

1
qs

∫ s

0
(s − t) ϕ (t) dt −

(
s

qs
− 1

)∣∣∣∣
s=1

= 1
qs

(1 − qs) −
( 1

qs
− 1

)
= 0;

addition, the integrand decreases in s,

∂
[

1
qs

∫ s
0 (s − t) ϕ (t) dt −

(
s
qs

− 1
)]

∂s
= 1

qs
[Φ (s) − 1] < 0,

so it is positive when s ∈ [ŝ, 1).
Therefore, we have shown the first part that when s ∈ [ŝ, 1], ∂∆π(s;α)ds

∂α

∣∣∣
α→1

> 0. Because the
equilibrium is zero-weak and α has no effect on Bank B’s equilibrium profits, we have

∂π (s; α)
∂α

∣∣∣∣
α→1

> 0.

In addition, similar as in Lemma 4, we have dŝ
dα < 0. Hence, if dx

dα < 0, Bank A’s expected
equilibrium profits

∫ 1
x πAds increases in α.

In a zero-weak equilibrium, we have ŝ = sbe
B . For Bank A, the break-even threshold x satisfies

0 = πA (r, x) = pHH (x)
∫ sB

be
0 tϕ (t) dt

qs
[µHH (x) (1 + r) − 1] + pHL (x) [µHL (x) (1 + r) − 1] .

Define the Implicit function F (α, x) ≡ πA (r, x) = 0. We calculate

∂F

∂α
= dπA (r, x)

dα
= ∂πA (r, x)

∂α
+ ∂sB

be

∂α

∂πA (r, x)
∂sB

be

.

When α → 1, we can solve for x and sbe
B . The threshold sbe

B is defined from

0 = π̂B
(
r; sB

be

)
=
∫ sB

be

0
pHH (t) [µHH (t) (r + 1) − 1] dt +pLH [µLH (r + 1) − 1]︸ ︷︷ ︸

→0 when α→1

,
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Hence,
∫ sB

be
0 tϕ(t)dt∫ sB

be
0 ϕ(t)dt

= 1
1+r , and similarly, x (α → 1) = 1

1+r . It follows that

∂πA (r, x)
∂sB

be

=
sB

beϕ
(
sB

be

)
qs

pHH (x) [µHH (x) (1 + r) − 1]

→
sB

beϕ
(
sB

be

)
qs

pHH (x) [x (1 + r) − 1] → 0.

Hence, at x (α) where Bank A breaks even, the only effect of α is via the direct change in technology,

∂F

∂α
= ∂πA (r, x)

∂α
+ ∂sB

be

∂α

∂πA (r, x)
∂sB

be︸ ︷︷ ︸
→0

→ ∂πA (r, x)
∂α

.

Note that

∂πA (r, x)
∂α

=
∫ sB

be
0 tϕ (t) dt

qs
ϕ (x) {2qhαx (1 + r) + 2 (1 − qh − qh)}︸ ︷︷ ︸

→0

− (2α − 1) ϕ (x)

q0
hx (1 + r) − 1︸ ︷︷ ︸

−

 > 0.

For Bank A, α has no effect in the case of competition upon HH, because the profit conditional
on winning is close to zero. Instead, α reduces the winner’s curse to Bank A with signal x—the
case where competitor Bank B receives hB = L.

Taken together, we have ∂F
∂α > 0. Combined with ∂F

∂x = ∂πA(r,x)
∂x > 0, implicit function theorem

implies dx
dα < 0.

A.5 Derivation of Correlated Hard Signals

Another aspect of information technology advancement is that the lenders’ hard information signals
become more correlated. Formally, with probability ρh, lenders receive the same signal realization
hc ∈ {H, L} and

P (hc = H |θh = 1) = P (hc = L |θh = 0) = α;

with probability 1 − ρh, each receives an independent hard signal according to Eq. (4).
With more correlated hard signals or a higher ρh, lenders are more likely to agree on the

customer quality and so more likely to compete (the event of HH). In terms of inference, the
posterior upon disagreement (that comes from the uncorrelated part of the assessment) is still the
prior qh.26 Taken together, competition becomes fiercer, because lenders are more likely to compete
but not more concerned about the winner’s curse.

26Upon competition (HH), lenders are less sure about a good quality borrower, i.e., µHH (ρh) decreases in ρh.
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A.6 Signal on Hardened Soft Fundamental

Perfectly correlated hardened soft signal. First, given the hardened soft signal hc
s = H, the

conditional density of soft signal s is

ϕ (s| hc
s = H) =

1
dsP (hc

s = H, s ∈ ds)
P (hc

s = H)

=qs
hqs

sαsϕ1 (s) + qs
h (1 − qs

s) αsϕ0 (s) + (1 − qs
h) qs

s (1 − αs) ϕ0 (s) + (1 − qs
h) (1 − qs

s) (1 − αs) ϕ0 (s)
qs

hαs +
(
1 − qs

h

)
(1 − αs)

= qs
hqs

sαs

qs
hαs +

(
1 − qs

h

)
(1 − αs)

[ϕ1 (s) − ϕ0 (s)] + ϕ0 (s)

= ϕ0 (s) +

↑ in η as αs> 1
2︷ ︸︸ ︷

αs

αs − (2αs − 1) η
·qs [ϕ1 (s) − ϕ0 (s)] .

Note that when additionally conditioning on the good soft fundamental state θs = 1, the hardened
soft signal hc

s and soft signal s are independent so that

ϕ (s| hc
s = H, θs = 1) = ϕ (s| θs = 1) = ϕ1 (s) .

Hence, hc
s = H reveals information about s only through reducing type II errors.

Due to the independence between the original hard signals hA, hB and hardened soft hc
s ,

soft signal s, we introduce notations to separate the events of signal realizations. Let p̂hAhB ≡
P
(
hA, hB

)
denote probability of the hard signal realizations, and µ̂hAhB ≡ P

(
θh

h = 1
∣∣∣hA, hB

)
denote the posterior probability of successful θh

h conditional on original hard signals. Let phc
s

(t) ≡
P (hc

s, s ∈ ds) denote the joint density of hardened soft signal hc
s and soft signal s, and µhc

s
≡

(θs = 1 |hc
s, s ∈ ds) denote the posterior probability of successful θs given hc

s and s. Let µhc
s

≡
(θs = 1 |hc

s ) denote the posterior probability of successful θs given hc
s. Then lender’s payoff function

could be rewritten as

πA (r, s)

=pHHH(s)
[
1 − F B (r)

]
[µHHH(s) (1 + r) − 1] + pHLH(s) [µHLH(s) (1 + r) − 1]

=p̂HHpH (s)
[
1 − F B (r)

]
[µ̂HHµH (s) (1 + r) − 1] + p̂HLpH (s) [µ̂HLµH (s) (r + 1) − 1]

∝p̂HH

[
1 − F B (r)

]
[µ̂HHµHϕ1 (s) (1 + r) − ϕ (s| hc

s = H)] + p̂HL [µ̂HLµHϕ1 (s) (r + 1) − ϕ (s| hc
s = H)] ,

where the “proportional to” in the last equation omits a constant P (hc
s = H). Compared with

the benchmark setting where hard and soft signals are independent, adding the hardening soft
signal plays two roles. First, hc

s = H improves screening, and lenders are more likely to have good
borrowers, as seen by the term µHϕ1 (s) in the above equation versus qsϕ1 (s) in the benchmark.
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Second, hc
s = H updates the distribution of the soft signal, as seen by ϕ (s| hc

s = H) versus ϕ (s) in
the benchmark; note that conditional on a good project, hc

s = H is independent and uninformative
about the soft signal, so under both settings its density is ϕ1 (s) conditional on repayment.

Similarly, for Bank B,

πB (r) ≡
∫ sA(r)

0
pHHH(t) [µHHH (t) (r + 1) − 1] dt + pLHH [µLHH (r + 1) − 1] .

= p̂HH

∫ sA(r)

0
pH (t) [µ̂HHµH (t) (r + 1) − 1] dt + p̂LHpH [µ̂LHµH (r + 1) − 1]

∝ p̂HH

∫ sA(r)

0
[µ̂HHµHϕ1 (s) (r + 1) − ϕ (s| hc

s = H)] dt + p̂LH [µ̂LHµH (r + 1) − 1] .

55


	Introduction
	Model Setup
	The Setting
	Information Technology and Information Span
	Discussions on Modelling and Related Literature
	Decisive Hard Signals and Parametric Assumptions.
	Credit Market Equilibrium Definition

	Credit Market Equilibrium Characterization
	Bank Profits and Optimal Strategies
	Credit Market Equilibrium

	Credit Market Competition Equilibrium
	Information Span and Equilibrium Illustration
	Bank Profits: Information Span vs. Information Precision
	Credit Allocation and Welfare

	Model Extensions and Discussions
	Correlated Hard Signals
	Signal on Hardened Soft Fundamental sh 

	Concluding Remarks
	Technical Appendices
	Credit Competition Equilibrium
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Derivation of Correlated Hard Signals
	Signal on Hardened Soft Fundamental


