INEQUALITY AND OPTIMAL MONETARY POLICY IN THE OPEN ECONOMY

Sushant Acharya¹ Edouard Challe²

¹Bank of Canada and CEPR

²Paris School of Economics and CEPR

LSE-Oxford Workshop in International Macro & Finance, 2-3 May 2024

The views expressed herein are those of the authors and not necessarily those of the Bank of Canada

MOTIVATION

• How do aggregate shocks affect domestic inequality in SOE, and how should CB respond?

MOTIVATION

• How do aggregate shocks affect domestic inequality in SOE, and how should CB respond?

• Open-Eco HANK literature (2021–) focuses on propagation of aggregate & policy shocks [Auclert et al. '21, Bayer et al. '23, De Ferra et al. '21, Druedahl et al. '22; Guo et al. '22; Oskolkov '23; Zhou '22...]

MOTIVATION

• How do aggregate shocks affect domestic inequality in SOE, and how should CB respond?

• Open-Eco HANK literature (2021–) focuses on propagation of aggregate & policy shocks [Auclert et al. '21, Bayer et al. '23, De Ferra et al. '21, Druedahl et al. '22; Guo et al. '22; Oskolkov '23; Zhou '22...]

• This paper: normative perspective on monetary policy in Open-Eco HANK

Main tradeoff and result

Aggregate shocks \Rightarrow output, national income \Rightarrow consumption risk & inequality

TRADE-OFF

Stabilizing consumption inequality

VS

Closing output gap + stabilizing inflation + manipulating ToT

RESULTS

Conditions for "SOE-HANK divine coincidence"

Plausible calibration \Rightarrow More output and exch-rate stabilization than in RANK

LITERATURE

1. Positive monetary policy analysis in open-economy HANK

[Auclert et al. '21, Bayer et al. '23, De Ferra et al. '21, Druedahl et al. '22; Guo et al. '22; Oskolkov '23; Zhou '22]

LITERATURE

1. Positive monetary policy analysis in open-economy HANK

[Auclert et al. '21, Bayer et al. '23, De Ferra et al. '21, Druedahl et al. '22; Guo et al. '22; Oskolkov '23; Zhou '22]

2. Optimal monetary policy analysis in closed-economy HANK

[Bhandari et al. '21, Acharya et al. '23, Le Grand et al. '23, McKay & Wolf '23, Davila & Schaab '23]

LITERATURE

1. Positive monetary policy analysis in open-economy HANK

[Auclert et al. '21, Bayer et al. '23, De Ferra et al. '21, Druedahl et al. '22; Guo et al. '22; Oskolkov '23; Zhou '22]

2. Optimal monetary policy analysis in closed-economy HANK

[Bhandari et al. '21, Acharya et al. '23, Le Grand et al. '23, McKay & Wolf '23, Davila & Schaab '23]

3. Optimal monetary policy in open-economy RANK or TANK

- 2-country or SOE models with int'al risk sharing
 - [Clarida et al. '01, '03, Devereux & Engel '03, Benigno & Benigno '03, '05, Galí & Monacelli '05, Corsetti & Pesenti '05, Faia & Monacelli '08, De Paoli '09a, Corsetti et al. '10, Engel '11, Iyer '16, Chen et al. '23]
- 2-country or SOE models without int'al risk sharing

[Benigno '09, De Paoli '09b; Farhi & Werning '12 Egorov & Mukhin '23, Corsetti et al. '23]

Households

- SOE à la Galí Monacelli (2005) + incomplete markets
- Perpetual youth demographics with turnover rate 1ϑ
- 2 groups of HHs:
 - Unconstrained (share $1-\theta$) \Rightarrow trade non-state contingent 1-period real actuarial bond
 - Hand-to-Mouth (share θ) \Rightarrow cannot access asset markets

- All HHs subject to uninsured idiosyncratic shocks in addition to aggregate shocks
- CARA-Normal structure as in Acharya et al. (2023)

$$\mathbb{E}_{s} \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(u \left(c_{t}^{s}(i, u) \right) - v \left(n_{t} \right) \right)$$
s.t.
$$c_{t}^{s}(i, u) + (1 + \tau^{*}) \frac{\vartheta}{R_{t}} a_{t+1}^{s}(i) = \mathbf{y}_{t}^{s}(i, u) + (1 - \tau_{t}^{a}) a_{t}^{s}(i) \qquad a_{t}^{t}(i) = a_{t}$$

$$\mathbb{E}_{s} \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(u \left(c_{t}^{s}(i, u) \right) - v \left(n_{t} \right) \right)$$
s.t.
$$c_{t}^{s}(i, u) + (1 + \tau^{*}) \frac{\vartheta}{R_{t}} a_{t+1}^{s}(i) = \mathbf{y}_{t}^{s}(i, u) + (1 - \tau_{t}^{a}) a_{t}^{s}(i)$$

$$\mathbf{y}_{t}^{s}(i, u) = (1 - \tau^{w}) w_{t} n_{t} e_{t}^{s}(i, u) + \mathcal{D}_{t} + \mathcal{T}_{t} + \mathbb{T}_{t}$$

$$\mathbb{E}_{s} \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(u \left(c_{t}^{s}(i, u) \right) - v \left(n_{t} \right) \right)$$
s.t.
$$c_{t}^{s}(i, u) + (1 + \tau^{*}) \frac{\vartheta}{R_{t}} a_{t+1}^{s}(i) = \mathbf{y}_{t}^{s}(i, u) + (1 - \tau_{t}^{a}) a_{t}^{s}(i)$$

$$\mathbf{y}_{t}^{s}(i, u) = (1 - \tau^{w}) w_{t} n_{t} e_{t}^{s}(i, u) + \mathcal{D}_{t} + \mathcal{T}_{t} + \mathbb{T}_{t}$$

$$e_{t} = 1 + \sigma_{t} \xi_{t}, \quad \xi_{t} = \xi_{t-1} + v_{t}$$

$$\mathbb{E}_{s} \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(-\frac{1}{\gamma} e^{-\gamma c_{t}^{s}(i)} - v \left(n_{t} \right) \right)$$
s.t.
$$c_{t}^{s}(i,u) + (1+\tau^{*}) \frac{\vartheta}{R_{t}} a_{t+1}^{s}(i) = \mathbf{y}_{t}^{s}(i,u) + (1-\tau_{t}^{a}) a_{t}^{s}(i)$$

$$\mathbf{y}_{t}^{s}(i,u) = (1-\tau^{w}) w_{t} n_{t} e_{t}^{s}(i,u) + \mathcal{D}_{t} + \mathcal{T}_{t} + \mathbb{T}_{t}$$

$$e_{t} = 1 + \sigma_{t} \xi_{t}, \quad \xi_{t} = \xi_{t-1} + v_{t}, \quad v \sim \mathcal{N}(0,1)$$

$$\mathbb{E}_{s} \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(-\frac{1}{\gamma} e^{-\gamma c_{t}^{s}(i)} - v \left(n_{t} \right) \right)$$
s.t.
$$c_{t}^{s}(i,u) + (1+\tau^{*}) \frac{\vartheta}{R_{t}} a_{t+1}^{s}(i) = \mathbf{y}_{t}^{s}(i,u) + (1-\tau_{t}^{a}) a_{t}^{s}(i)$$

$$\mathbf{y}_{t}^{s}(i,u) = \underbrace{\frac{P_{H,t}}{P_{t}} y_{t}}_{\text{national income}} + \mathbb{T}_{t} + \frac{\sigma_{y,t}}{\sigma_{y,t}} \xi_{t}^{s}(i) \qquad \sigma_{y,t} = \sigma_{y} e^{-\varphi \widehat{y}_{t}}$$

Newborn i at date s max

$$\mathbb{E}_{s} \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(-\frac{1}{\gamma} e^{-\gamma c_{t}^{s}(i)} - v \left(n_{t} \right) \right)$$
s.t.
$$c_{t}^{s}(i,u) + (1+\tau^{*}) \frac{\vartheta}{R_{t}} a_{t+1}^{s}(i) = \mathbf{y}_{t}^{s}(i,u) + (1-\tau_{t}^{a}) a_{t}^{s}(i)$$

$$\mathbf{y}_{t}^{s}(i,u) = \underbrace{\frac{P_{H,t}}{P_{t}} y_{t}}_{\text{national income}} + \mathbb{T}_{t} + \frac{\sigma_{y,t}}{\sigma_{y,t}} \xi_{t}^{s}(i) \qquad \sigma_{y,t} = \sigma_{y} e^{-\varphi \widehat{y}_{t}}$$

Euler equation:

$$e^{-\gamma c_t^s(i,u)} = \left(\frac{\beta R_t}{1+\tau^*}\right) \mathbb{E}_t \left[e^{-\gamma c_{t+1}^s(i,u)} \right]$$

• CARA-Normal structure ⇒ linear policy rules ⇒ linear aggregation

- CARA-Normal structure ⇒ linear policy rules ⇒ linear aggregation
- Define

$$c_t(u) = (1 - \vartheta) \sum_{s=-\infty}^t \vartheta^{t-s} \int c_t^s(i, u) di$$

• CARA-Normal structure ⇒ linear policy rules ⇒ linear aggregation

Define

$$c_t(u) = (1 - \vartheta) \sum_{s = -\infty}^t \vartheta^{t-s} \int c_t^s(i, u) di$$

• Group-*u* Euler equation:

$$\Delta c_{t+1}(u) = \underbrace{\frac{1}{\gamma} \ln \left(\frac{\beta R_t}{1 + \tau^{\star}} \right)}_{\text{intertemporal substitution}} + \underbrace{\frac{\gamma}{2} \sigma_{c_u, t+1}^2}_{\text{prec. saving}}$$

where

$$\sigma_{c_u,t} \approx \mu \, \sigma_{y,t} + (1-\mu) \, \sigma_{c_u,t+1}$$

HAND-TO-MOUTH HOUSEHOLDS

Consume current income:

$$c_t^s(i,h) = \frac{P_{H,t}}{P_t} y_t + \sigma_{y,t} \xi_t^s(i,h)$$

so that

$$c_t(h) = \frac{P_{H,t}}{P_t} y_t$$

where

$$\frac{P_{H,t}}{P_t} = \left(\frac{1 - \alpha Q_t^{1-\eta}}{1 - \alpha}\right)^{\frac{1}{1-\eta}} \equiv p_H(Q_t)$$

• Consumption of HtM highly responsive Q_t

HOUSEHOLDS: DEMAND SYSTEM AND LABOUR SUPPLY

• Demand system as in Galí-Monacelli with home bias $1-\alpha$ and elasticities

- η btw. H vs. F goods
- ν across countries
- ε across varieties

• Utilitarian unions set wages and demand uniform labor from HHs

• Flexible wages + sticky prices as in Galí-Monacelli

SUPPLY SIDE

Rotemberg pricing + PCP + optimal payroll subsidy ⇒ NKPC:

$$\ln \Pi_{H,t} = \frac{\varepsilon}{\Psi} \left[1 - \left(\frac{1}{1 - \tau} \right) \left(\frac{\varepsilon - 1}{\varepsilon} \right) p_H(Q_t) \frac{z_t}{w_t} \right] + \beta \left(\frac{z_t w_{t+1} y_{t+1}}{z_{t+1} w_t y_t} \right) \ln \Pi_{H,t+1}$$

where

$$1 - \tau = \left(\frac{\varepsilon - 1}{\varepsilon}\right) \underbrace{\left[\frac{\chi - 1 + \alpha}{\chi - 1}\right]}_{\text{steady-state ToT manip.}}$$

and $\chi = \eta(1-lpha) +
u$ is the trade elasticity

SUPPLY SIDE

Rotemberg pricing + PCP + optimal payroll subsidy ⇒ NKPC:

$$\ln \Pi_{H,t} = \frac{\varepsilon}{\Psi} \left[1 - \left(\frac{1}{1 - \tau} \right) \left(\frac{\varepsilon - 1}{\varepsilon} \right) p_H(Q_t) \frac{z_t}{w_t} \right] + \beta \left(\frac{z_t w_{t+1} y_{t+1}}{z_{t+1} w_t y_t} \right) \ln \Pi_{H,t+1}$$

where

$$1 - \tau = \left(\frac{\varepsilon - 1}{\varepsilon}\right) \underbrace{\left[\frac{\chi - 1 + \alpha}{\chi - 1}\right]}_{\text{steady-state ToT manip.}}$$

and $\chi = \eta(1-lpha) +
u$ is the trade elasticity

Output:

$$y_t = \frac{z_t n_t}{1 + \frac{\Psi}{2} \left(\ln \Pi_{Ht} \right)^2}$$

Market clearing and capital flows

• Home goods:

$$y_t = c_{Ht}(\mathbf{Q_t}, c_t) + c_{Ht}^*(\mathbf{Q_t}, c^*)$$

MARKET CLEARING AND CAPITAL FLOWS

• Home goods:

$$y_t = c_{Ht}(\mathbf{Q_t}, c_t) + c_{Ht}^*(\mathbf{Q_t}, c^*)$$

• Home savings:

$$\underbrace{(1-\theta)\vartheta a_{t+1}}_{\text{intermediaries' liabilities}} = R_t[(1-\theta)\vartheta a_t + \frac{p_{Ht}y_t}{p_{Ht}y_t} - c_t]$$

Market clearing and capital flows

• Home goods:

$$y_t = c_{Ht}(\mathbf{Q}_t, c_t) + c_{Ht}^*(\mathbf{Q}_t, c^*)$$

• Home savings:

$$\underbrace{(1-\theta)\vartheta a_{t+1}}_{\text{intermediaries' liabilities}} = R_t[(1-\theta)\vartheta a_t + \frac{p_{Ht}y_t}{p_{Ht}y_t} - c_t]$$

• Fisher parity:

$$\ln R_t = \ln R_t^* + \ln \frac{Q_{t+1}}{Q_t} - \wp a_{t+1}$$

Planner maximises

$$\mathbb{W}_0 = \sum_{t=0}^{\infty} \beta^t \left[\underbrace{(1-\vartheta) \sum_{s=-\infty}^t \vartheta^{t-s} \int \left(-\frac{1}{\gamma} e^{-\gamma c_t^s(i)}\right) di - v(n_t)}_{\text{flow utility to planner}} \right]$$

at time t

Planner maximises

$$\mathbb{W}_{0} = \sum_{t=0}^{\infty} \beta^{t} \left[\underbrace{\left(-\frac{1}{\gamma} e^{-\gamma c_{t}} \right)}_{=u(c_{t})} \underbrace{\left(1 - \vartheta \right) \sum_{s=-\infty}^{t} \vartheta^{t-s} \int \left(e^{-\gamma \left(c \atop t}^{s}(i) - c_{t} \right) \right) di}_{\equiv \Sigma_{t}} - v(n_{t}) \right]$$

Planner maximises

$$\mathbb{W}_0 = \sum_{t=0}^\infty \beta^t \left[\underbrace{u(c_t)}_{\substack{\text{felicity of } \\ \text{notional RA } (<0)}} \times \underbrace{\Sigma_t}_{\substack{\text{welfare cost of } \\ \text{inequality}}} - v(n_t) \right]$$

RANK:
$$\Sigma_t = 1$$

Planner maximises

$$\mathbb{W}_0 = \sum_{t=0}^\infty \beta^t \left[\underbrace{u(c_t)}_{\substack{\text{felicity of } \\ \text{notional RA } (<0)}} \times \underbrace{\Sigma_t}_{\substack{\text{welfare cost of } \\ \text{inequality}}} - v(n_t) \right]$$

RANK:
$$\Sigma_t = 1$$

HANK:
$$\Sigma_t > 1$$

• Overall index combines within and between group inequalities

$$\Sigma_{t} = (1 - \theta) e^{-\gamma \theta \Upsilon_{t}} \Sigma_{u,t} + \theta e^{\gamma (1 - \theta) \Upsilon_{t}} \Sigma_{h,t}$$

Overall index combines within and between group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma \theta \Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma (1 - \theta) \Upsilon_t} \Sigma_{h,t}$$

• Within unconstrained:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_u,t}^2}{2}} \left[1 - \vartheta + \vartheta \Sigma_{u,t-1} \right]$$

Overall index combines within and between group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma \theta \Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma (1 - \theta) \Upsilon_t} \Sigma_{h,t}$$

• Within unconstrained:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_u,t}^2}{2}} \left[1 - \vartheta + \vartheta \Sigma_{u,t-1} \right]$$

• Within **HtM**:

$$\Sigma_{h,t} = \frac{1 - \vartheta}{e^{-\frac{\gamma^2 \sigma_y^2}{2}} - \vartheta}$$

Overall index combines within and between group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma \theta \Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma (1 - \theta) \Upsilon_t} \Sigma_{h,t}$$

• Within unconstrained:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_u,t}^2}{2}} \left[1 - \vartheta + \vartheta \Sigma_{u,t-1} \right]$$

• Within **HtM**:

$$\Sigma_{h,t} = \frac{1 - \vartheta}{e^{-\frac{\gamma^2 \sigma_{y,t}^2}{2}} - \vartheta}$$

• Between:

$$\Upsilon_t = c_t(u) - c_t(h)$$

Overall index combines within and between group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma \theta \Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma (1 - \theta) \Upsilon_t} \Sigma_{h,t}$$

• Within unconstrained:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_u,t}^2}{2}} \left[1 - \vartheta + \vartheta \Sigma_{u,t-1} \right]$$

• Within **HtM**:

$$\Sigma_{h,t} = \frac{1 - \vartheta}{e^{-\frac{\gamma^2 \sigma_{y,t}^2}{2}} - \vartheta}$$

Between:

$$\Upsilon_t = c_t(u) - c_t(h)$$

• If $\Upsilon_t > 0$, put relatively less weight on inequality within group u

• Suppose $\widehat{R}_t^* > 0$ but domestic monetary policy does not respond: $\widehat{R}_t = 0$

- Suppose $\widehat{R}_t^*>0$ but domestic monetary policy does not respond: $\widehat{R}_t=0$
- UIP implies expected appreciation:

$$\Delta \widehat{Q}_{t+1} = \widehat{R}_t - \widehat{R}_t^* = -\widehat{R}_t^* < 0$$

- Suppose $\widehat{R}_t^*>0$ but domestic monetary policy does not respond: $\widehat{R}_t=0$
- UIP implies expected appreciation:

$$\Delta \widehat{Q}_{t+1} = \widehat{R}_t - \widehat{R}_t^* = -\widehat{R}_t^* < 0$$

• Cons. growth of each group:

$$\Delta \widehat{c}_{u,t+1} = \underbrace{\frac{1}{\gamma} \widehat{R}_t}_{=0} + \underbrace{\frac{\gamma \sigma_{c_u}^2}{2} \widehat{\sigma}_{c_u,t+1}}_{=0} \quad \text{and} \quad \Delta \widehat{c}_{h,t+1} = \underbrace{-\frac{\alpha}{1-\alpha} \Delta \widehat{Q}_{t+1}}_{>0} + \Delta \widehat{y}_{t+1}$$

- Suppose $\widehat{R}_t^*>0$ but domestic monetary policy does not respond: $\widehat{R}_t=0$
- UIP implies expected appreciation:

$$\Delta \widehat{Q}_{t+1} = \widehat{R}_t - \widehat{R}_t^* = -\widehat{R}_t^* < 0$$

• Cons. growth of each group:

$$\Delta \widehat{c}_{u,t+1} = \underbrace{\frac{1}{\gamma} \widehat{R}_t}_{=0} + \underbrace{\frac{\gamma \sigma_{c_u}^2}{2} \widehat{\sigma}_{c_u,t+1}}_{=0} \quad \text{and} \quad \Delta \widehat{c}_{h,t+1} = \underbrace{-\frac{\alpha}{1-\alpha} \Delta \widehat{Q}_{t+1}}_{>0} + \Delta \widehat{y}_{t+1}$$

• Depending on domestic mon. policy response, $c_{u,t}$ and $c_{h,t}$ can diverge

POLICY INSTRUMENTS

• Fiscal policy: $\{\tau, \tau^{\star}, \tau^{w}, \tau_{t}^{a}\}$ optimally set ex ante and unresponsive to aggregate shocks

• Monetary policy: $\{i_t\}$ adjusted optimally in response to aggregate shocks

POLICY INSTRUMENTS

- Fiscal policy: $\{\tau, \tau^*, \tau^w, \tau_t^a\}$ optimally set ex ante and unresponsive to aggregate shocks
 - ullet au balances monopolistic distortions
 - τ^w balances labour-wedge distortions
 - τ^* kills steady-state capital outflow
 - τ_0^a kills unhedged interest-rate exposure
 - results in constrained-efficient steady state

• Monetary policy: $\{i_t\}$ adjusted optimally in response to aggregate shocks

Domestic Productivity Shock

- RANK benchmark: Galì & Monacelli (2005)
- With $\gamma = \eta = \nu = 1$, domestic PPI stability is optimal \Rightarrow "inward-looking" policy
- Optimal allocation features

$$c_t = p_H(Q_t)y_t$$
 $a_t = 0$ $\Pi_{H,t} = 1$ $\forall t \ge 0$

 Implementable by monetary policy with or without international risk sharing (in latter case, HHs choose not to borrow/lend from abroad)

z_t -SHOCK (RANK)

SOE-HANK DIVINE COINCIDENCE

Proposition: Under Cole-Obstfeld elasticities ($\gamma = \eta = \nu = 1$) and acyclical income risk ($\varphi = 0$), optimal monetary policy implements strict producer price stability in SOE-HANK, regardless of the fraction of HtM households (θ) or the size of income risk ($\sigma_{y,t}$).

Sketch of proof:

- Acyclical risk ⇒ constant within-group inequality
- Cole-Obstfeld ⇒ unconstrained as a whole do not save ⇒ no between-group inequality
- The two groups are equally exposed to the aggregate shock

z_t -SHOCK (HANK, COLE-OBSTFELD, ACYCLICAL RISK)

Breakdowns of divine coincidence

- Former calibration is an (unrealistic) benchmark
- In reality,
 - risk is countercyclical

$$\Rightarrow \varphi = 5$$
 as in Acharya et al. (2023)

• trade elasticities are high, EIS is small

$$\Rightarrow \eta = 1.5, \nu = 4, \gamma = 2$$
 as in Egorov & Mukhin (2023)

• Note: away from Cole-Obstfeld, traditional ToT manipulation also plays out

z_t -SHOCK (HANK, CO, COUNTERCYCLICAL RISK)

z_t -SHOCK (HANK, NON-CO, COUNTERCYCLICAL RISK)

R^* -SHOCK (HANK, NON-CO, COUNTERCYCLICAL RISK)

Conclusion

- Acyclical risk + Cole-Obsftfeld ⇒ SOE-HANK divine coincidence
 (i.e., Cole-Obstfeld matters for ToT manipulation and for inequality)
- · Breaks down under more plausible risk (counter)cyclicality and (higher) trade elasticities
- Optimal policy implements less volatile exchange rate and output in HANK
 - [unequal exposures] \Rightarrow reduces differences in real incomes btw u and h HHs
 - [countercyclical risk] \Rightarrow reduces fluctuations of within-group inequality

Demand System

- · Final cons. goods produced by competitive retailers aggregating varieties from all countries
- Their production functions are

$$c = \left[\alpha^{\frac{1}{\eta}} c_F^{\frac{\eta-1}{\eta}} + (1-\alpha)^{\frac{1}{\eta}} c_H^{\frac{\eta}{\eta-1}}\right]^{\frac{\eta}{\eta-1}} \quad c_H = \left[\int_0^1 c_H(j)^{\frac{\varepsilon-1}{\varepsilon}} dj\right]^{\frac{\varepsilon}{\varepsilon-1}} \quad c_F = \left[\int_0^1 c_k^{\frac{\nu-1}{\nu}} dk\right]^{\frac{\nu}{\nu-1}}$$

- Let $p_{H,t}, p_{F,t}$ be the prices of the home and foreign baskets in terms of home consumption
- Profit minimisation + zero-profit condition gives the demands

$$c_{H,t} = (1 - \alpha)p_{H,t}^{-\eta}c_t$$
 $c_{F,t} = (1 - \alpha)p_{F,t}^{-\eta}c_t$

where

$$(1-\alpha)p_{H,t}^{1-\eta} + \alpha p_{F,t}^{1-\eta} = 1$$
 and $p_{F,t} = Q_t$

• Conversely, the demand for home goods by the RoW is

$$c_{Ht}^* = \alpha \left(\frac{p_{H,t}}{Q_t}\right)^{-\nu} c^*$$

Labour Supply

- Setup similar to Auclert et al. (2023): Each HH supplies a continuum of labour types to a continuum of unions, each of which demands the same number of hours from all members
- Each union is benevolent and utilitarian, and sets wages accordingly
- With flexible wages, the optimality condition boils down to

$$\underbrace{(1 - \tau^w) \, w_t}_{\text{post-tax wage}} = \underbrace{\mathcal{M}_w}_{\text{markup}} \times \underbrace{\frac{v'(n_t)}{u'(c_t) \, \Sigma_t}}_{\text{"avg. MRS"}}$$

where

$$\Sigma_t = (1 - \vartheta) \sum_{s = -\infty}^{t} \vartheta^{t-s} \int e^{-\gamma [c_t^s(i) - c_t]} di$$

captures the dispersion in marginal utility between the members of every union

