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from primary inputs, and they are computed from based on the most used global Input-
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correlation emerging between upstreamness and downstreamness of the same 
industrial sector/country, with correlation slope equal to +1. This effect is robust against 
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with slope close to +1, even though the random reshuffling has destroyed any 
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Abstract

This paper is concerned with upstreamness and downstreamness of industries and countries in global value
chains. Upstreamness and downstreamness measure respectively the average distance of an industrial sector
from final consumption and from primary inputs, and they are computed from based on the most used global
Input-Output tables databases, e.g., the World Input-Output Database (WIOD). Recently, Antràs and Chor
reported a puzzling and counter-intuitive finding in data from the period 1995-2011, namely that (at country
level) upstreamness appears to be positively correlated with downstreamness, with a correlation slope close
to +1. This effect is stable over time and across countries, and it has been confirmed and validated by later
analyses. We first analyze a simple model of random Input/Output tables, and we show that, under minimal
and realistic structural assumptions, there is a natural positive correlation emerging between upstreamness
and downstreamness of the same industrial sector/country, with correlation slope equal to +1. This effect is
robust against changes in the randomness of the entries of the I/O table and different aggregation protocols.
Secondly, we perform experiments by randomly reshuffling the entries of the empirical I/O table where these
puzzling correlations are detected, in such a way that the global structural constraints are preserved. Again,
we find that the upstreamness and downstreamness of the same industrial sector/country are positively
correlated with slope close to +1, even though the random reshuffling has destroyed any underlying economic
information about inter-sectorial connections and trends. Our results – rooted in the Complexity Science
approach to economic problems – strongly suggest that the empirically observed puzzling correlation may
rather be a necessary consequence of the few structural constraints (positive entries, and sub-stochasticity)
that Input/Output tables and their surrogates must meet.
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1. Introduction

The structure of national and international trade
flows has undergone a dramatic transformation in
the past decades. Understanding how global value
chains shape the exchange of goods and money at
different scales (from industrial sectors to countries)
has become of central importance. Researches on
these issues usually rely on Input-Output analysis –
the field pioneered by V. Leontief [1, 2]. This level
of analysis is facilitated by the increasing availabil-
ity and development of detailed Input/Output (I-

O) tables for each country [3, 4].

To characterize the complexity of global value
chains, metrics have been devised that take such
empirical I-O tables as starting point. In partic-
ular, Antràs and Chor [5], Miller and Temurshoev
[6] and Fally [7] introduced the notions of upstream-
ness and downstreamness to quantify the position
of each economic sectors (and countries as a whole)
with respect to final consumption, and raw materi-
als, respectively (see Section 2 for details).

In a recent paper that has attracted much atten-
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tion, Antràs and Chor [8] reported empirical obser-
vations of a puzzling correlation existing between
the upstreamness and downstreamness of several
countries1 over many years (already noted in [6]).
More precisely, they use data from the World Input-
Output Database (WIOD) for the period 1995-
2011, and observed that “countries that appear to
be upstream according to their production-staging
distance from final demand (U) are at the same
time recorded to be downstream according to their
production-staging distance from primary factors
(D)”, meaning that “countries that sell a dispro-
portionate share of their output directly to final
consumers (thus appearing to be downstream in
GVCs according to U) tend to also feature high
value-added over gross output ratios, reflecting a
limited amount of intermediate inputs embodied in
their production (thus appearing to be upstream in
GVCs according to D)”. A scatter plot of upstream-
ness vs. downstreamness at country level shows an
evident linear relation with slope close to +1, an
effect that persisted in all years of their sample –
and that even intensified between 1995-2011 (see
e.g. Figs. 4 and 5 in [8]). Similar effects are then
shown also at the single country-industry level (see
e.g. Fig. 10 in [8]).
Several explanatory factors have been put for-

ward in [8] to make sense of these puzzling correla-
tions, notably the possible persistence of large trade
barriers across countries – which is however ruled
out, as trade costs were found to have fallen off
significantly over the period 1995-2011 – and the
growing importance of the service sectors, which
typically feature short production chain lengths and
little use of intermediate inputs in production. We
also mention that the standard definitions of up-
streamness and downstreamness have been criti-
cally re-assessed, e.g. in [9], and alternative mea-
sures put forward there.
Besides looking at empirical data, it is sensible

to corroborate the analysis with a complementary
approach, namely the use of random models of in-
terconnected economies, which have had a long and
fruitful history in econometric studies [10–27]. The
rationale is that whatever empirically observed ef-
fect survives randomization of the pairwise inter-
action between constituents cannot be due to any
tailored and specific piece of information carried by

1The upstreamness (or downstreamness) of a country is
a weighted average upstreamness (downstreamness) of the
economic sectors of the country (see Section 2 for details).

the data, but must instead be generic and only due
to global and structural constraints. In this spirit,
we propose to look at the reported puzzling cor-
relations between upstreamness and downstream-
ness at in Global Value Chains through the prism
of (i) a random model of I-O tables, whose entries
are drawn independently at random from a given
distribution, preserving a few minimal structural
constraints (essentially, non-negativity of the en-
tries, and sub-stochasticity), for which the corre-
lation between upstreamness and downstreamness
can be tackled analytically, and (ii) a randomized
process whereby the columns of an empirical I/O
table where such correlations were detected are ran-
domly reshuffled, therefore preserving the row sums
of the original matrix. In both cases, we wish to see
if randomization of the inter-sectorial dependencies
destroys such correlations, as it would be natural to
expect if these were due to finely tuned and subtle
economic considerations. Contrary to our expecta-
tions, though, we find overwhelming evidence that
it actually does not.

The paper is organized as follows. In Section 2
we provide the technical background, including the
definition and interpretation of upstreamness and
downstreamness, and how these measures are con-
structed from the I-O table. In Section 3 we first
assume that the interaction matrix A between sec-
tors is a random matrix, and then we construct the
corresponding Upstreamness and Downstreamness
matrices as well as the “covariance” and “slope”
observables that we can monitor numerically and
compute analytically in some cases. In Section
4, we provide our analytical results on a random
model with exponential disorder, which shows that
the scatter plot between upstreamness and down-
streamness of the same sector has necessarily slope
+1 for any matrix size N . These results are tested
numerically in Section 5, along with numerical tests
for other distributions of the entries of A, all con-
firming the same conclusions. In Section 6 we per-
form our random reshuffling experiment on empir-
ical I-O matrices, which demonstrate that matri-
ces satisfying the same structural constraints as the
original one, but with any real economic informa-
tion about inter-sectorial relations being wiped out,
still display the same strong correlations between
upstreamness and downstreamness as the original
interaction matrix. Finally, in Section 6 we offer
some critical discussion and concluding remarks.
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2. Definition of Upstreamness and Down-
streamness

Antràs and Chor [5] considered a closed economy
of N industries with no inventories – for instance,
corresponding to a hypothetical single country that
does not trade with others. For each industrial sec-
tor i ∈ {1, 2, . . . , N} the value of gross output in-
dicated with Yi equals the sum of its use as a final
good (Fi) and its use as an intermediate input to
other industries (Zi)

Yi = Fi + Zi = Fi +

N∑
j=1

aij (1)

= Fi +

N∑
j=1

dijYj . (2)

Here, dij is the dollar amount of sector i’s output
needed to produce one dollar’s worth of sector j’s
output (see schematic structure of a I-O matrix for
a single country in Fig. 1).

Figure 1: Scheme of the structure of a single-country input-
output table [3, 4, 28].

Iterating the identity in (2), one obtains an infi-
nite sequence of terms reflecting the use of sector
i’s output at different level in the value chain

Yi = Fi +

N∑
j=1

dijFj +

N∑
j=1

N∑
k=1

dikdkjFj + . . . . (3)

Using the matrix geometric series
∑

k≥0 D
k =

[1N −D]−1, we can eventually rewrite (3) as

Y = [1N −D]−1F , (4)

where 1N is the N ×N identity matrix, D = (dij)
is the matrix of dollar values, and F the column
vector of final demands.

Antràs and Chor [5] therefore proposed the fol-
lowing measure of upstreamness of the i-th indus-
try, by multiplying each of the terms in (3) by their
distance from final use, and dividing by Yi

U1i = 1 · Fi

Yi
+ 2 ·

∑N
j=1 dijFj

Yi

+ 3 ·
∑N

j,k=1 dikdkjFj

Yi
+ · · · = ([1N −D]−2F )i

Yi
,

(5)

where (·)i indicates the i-th component of the vec-
tor.

Inserting (4) into (5), we can rewrite the up-
streamness vector as

U1 = [1N −AU ]
−11 , (6)

where

AU = Y −1A =


a11

Y1
· · · a1N

Y1

...
. . .

...
aN1

YN
· · · aNN

YN

 (7)

and Y = diag(Y1, . . . , YN ). The matrix AU

has therefore non-negative elements, and is row-
substochastic (

∑
j(AU )ij ≤ 1 for all sectors j) be-

cause (AU )ij = dijYj/Yi is the share of sector i’s
total output that is purchased by industry j.

The upstreamness is defined in such a way that
terms of the sum that are further upstream in the
value chain have larger weight. By construction
U1i ≥ 1 and is precisely equal to 1 if no output of
industry i is used as input to other industries, that
is the output of industry i is only used to satisfy
the final demand.

Antràs et al. [29] later established an equivalence
between their upstreamness measure and a measure
– defined in a recursive fashion – of the “distance”
of an industry from the final demand proposed in-
dependently by Fally [7]. Fally’s upstreamnsess U2

is defined as follows:

U2i = 1 +

N∑
j=1

dijYj

Yi
U2j . (8)

The idea is that U2 aggregates information on the
extent to which a sector in a given country produces
goods that are sold directly to final consumers or
that are sold to other sectors that themselves sell
largely to final consumers. Sectors selling a large
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share of their output to relatively upstream indus-
tries should be therefore relatively upstream them-
selves. Using the fact that dijYj = aij we have
again that

U2 = [1N −AU ]
−11 , (9)

where AU is defined in (7). In [8] an application of
those measures for the analysis of empirical data on
global value chains is presented.
On the input-side, there is an accounting identity

that sector i’s total input Yi be equal to the value
of its primary inputs (value added) Vi plus its in-
termediate input purchases from all other sectors:

Yi = Vi +Zi = Vi +

N∑
j=1

aji = Vi +

N∑
j=1

djiYj , (10)

or in vector/matrix form

Y = [1N −DT ]−1V . (11)

Similarly to [5] (see (5)), Miller and Temurshoev [6]
introduced the so-called downstreamness measuring
the average distance between suppliers of primary
inputs and sectors as input purchaser along the in-
put demand supply chain as follows

D1i = 1 · Vi

Yi
+ 2 ·

∑N
j=1 Vjdji

Yi
+

+ 3 ·
∑N

j,k=1 Vjdjkdki

Yi
+ · · · = ([1N −DT ]−2V )i

Yi
.

(12)

As before, using (11), we obtain

D1 = [1N −AD]−11 (13)

with

with AD = (AY −1)T =


a11

Y1
· · · aN1

Y1

...
. . .

...
a1N

YN
· · · aNN

YN

 .

(14)
Also the matrix AD has therefore non-negative ele-
ments, and is row-substochastic (

∑
j(AD)ij ≤ 1 for

all sectors j). It is worth noting that by construc-
tion the matrices AU and AD share the diagonal
elements aii/Yi.
Finally, as in the upstreamness case, also for the

downstreamness, Fally [7] introduced an analogous
iterative definition of the form

D2i = 1 +

N∑
j=1

djiD2j , (15)

which can be again mapped with simple manipula-
tions into Eq. (13) using Yidji = aji.
The I-O Table in Fig. 1 can be modified in a con-

ceptually simple way to account for inter-country
trade by accommodating different inter-sectorial
blocks (one for each country) – see scheme in Fig.
1 of [8]. The upstreamness (or downstreamness) of
a country is then a suitably averaged (aggregate)
version of the upstreamness (or downstreamness)
of all industrial sectors of that country. In prin-
ciple, there are two different ways to perform this
aggregation. First, one could take the “giant” I-
O table and collapse its entries at the country-by-
country level by computing the total purchases of
intermediate inputs by country j from country i –
and then compute the upstreamness and the down-
streamness on the collapsed (aggregate) table. Or,
one could keep working with the giant table, com-
pute the upstreamness and the downstreamness of
industrial sectors within a country, and then per-
form a suitable average of those at country level.
In [8], the two approaches were found to deliver
extremely highly correlated country-level indices of
GVC positioning.

3. The random model

Our randomized model is based on the closed-
economy paradigm described in the previous sec-
tion, and it assumes that the N × N matrices AU

and AD (defined in Eqs. (7) and (14), respectively)
are generated from a random interaction matrix A
between sectors, i.e. without any structural infor-
mation about the underlying dynamics of goods and
prices apart from the constraint that their entries
be non-negative, and that the matrices be row-
substochastic. See subsection 3.2 for the precise
definition of the random model.

3.1. Covariance and slope

Assuming therefore that the underlying model for
the interaction matrix A is random, the covariance
between the upstreamness (U1)i and downstream-
ness (D1)i (defined in Eqs. (6) and (13), respec-
tively) of the same i-th sector is

Cov((U1)i, (D1)i) =

= E [(U1)i(D1)i]− E[(U1)i]E[(D1)i] , (16)

where the expectation E[·] is taken w.r.t. the
joint probability density function (pdf) of the en-
tries of the matrix A (from which AU and AD are
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constructed). Since the upstreamness and down-
streamness are defined in terms of a complicated
matrix inversion, computing the covariance in Eq.
(16) is a non-trivial task even for very simple joint
pdfs of the entries of A.

However, we can take advantage of the results in
Ref. [30, 31], which demonstrated that the “true”
upstreamness and downstreamness (as defined in
Eqs. (6) and (13), respectively) are individually
correlated with simpler rank-1 estimators

Ũi = 1 +
ri

1− (1/N)
∑

j rj
(17)

D̃i = 1 +
r′i

1− (1/N)
∑

j r
′
j

, (18)

where ri =
∑

j(AU )ij are the row sums of AU , and
r′i =

∑
j(AD)ij are the row sums of AD.

It is therefore sufficient to compute the covari-
ance between the simpler estimators

Cov(Ũi, D̃i) = E[ŨiD̃i]− E[Ũi]E[D̃i] (19)

to draw meaningful conclusions about the covari-
ance between upstreamness and downstreamness as
originally defined.

Noting that the quantities (1/N)
∑

j rj and
(1/N)

∑
j r

′
j quickly converge to their non-

fluctuating averages E[r] and E[r′] by virtue of the
Law of Large Numbers (LLN), we make the further
simplifying move to replace these quantities with
their non-fluctuating averages directly in the cal-
culation of the covariance Eq. (19)2. Therefore,
our covariance of interest reduces to the following
object

CN =
E[rr′]− E[r]E[r′]

(1− E[r])(1− E[r′])
, (20)

where we omitted the i-dependence (as every sector
is statistically equivalent to any other in our ran-
dom models). Therefore, r and r′ can be viewed
as the sum of, say, the first row of AU and AD,
respectively.

We check with numerical simulations in Figs. 2
and 3 that indeed our conclusions are not affected
by the fact that we considered simpler estimators
in lieu of the original observables, as the former are
perfectly correlated with the latter.

2More precisely, we make the approximation

E
[

ri
1−(1/N)

∑
j rj

]
≈ E[r]

1−E[r] , and similarly for r′.
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Figure 2: Scatter plot of the approximate upstreamness (Eq.
(17)) vs. the “true” upstreamness (U1)i for our random
model with exponential disorder. The parameters used are
µ = 1, µF = 0.1, N = 100, i = 7. There are 1000 pairs of
points in the figure, each obtained from a different instance
of the random matrix A with exponential disorder.

The slope S of the scatter plot between D̃i and
Ũi is easily determined from Eq. (19) by assuming
first that there be a linear relation between the two,
D̃i = SŨi, and substituting in the expression for the
covariance Eq. (19) we get

Cov(Ũi, D̃i) = S
{
E[Ũ2

i ]− E[Ũi]
2
}

, (21)

from which we deduce

S =
Cov(Ũi, D̃i)

Var[Ũi]
, (22)

where Var[Ũi] = E[Ũ2
i ] − E[Ũi]

2 is the variance of
the approximate upstreamness.

Making again the further approximation that
(1/N)

∑
j rj is replaced with its non-fluctuating av-

erage E[r] by virtue of the Law of Large Numbers,
and after simple algebra from Eq. (18), we have
that the slope S can be approximated by

S =
CN (1− E[r])2

E[r2]− E[r]2
. (23)

3.2. Model definition

In the random model we consider that the en-
tries of A are drawn independently from an expo-
nential probability density function (pdf) p(a) =
µ exp(−µa) with mean 1/µ. As such, the entries
of A are all positive, and no economic or empiri-
cally motivated information whatsoever is injected
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Figure 3: Scatter plot of the approximate downstreamness
(Eq. (18)) vs. the “true” downstreamness (D1)i for our
random model with exponential disorder. The parameters
used are µ = 1, µF = 0.01, N = 100, i = 7. There are 1000
pairs of points in the figure, each obtained from a different
instance of the random matrix A with exponential disorder.

in the construction of A. The final demand val-
ues Fi (i = 1, . . . , N) are further modeled as i.i.d.
exponential random variables with mean 1/µF .
From the matrix A, we construct the matrices

AU and AD (see Eq. (7) and (14), together with
the definition of Yi in Eq. (1)) as

(AU )ij =
aij∑

j aij + Fi
(24)

(AD)ij =
aji∑

j aij + Fi
, (25)

where we used that
∑

j aij+Fi =
∑

j aji+Vi for all
i, as follows from the accounting identity. There-
fore, provided that µF is sufficiently small3, both
AU and AD as defined above have non-negative ele-
ments, and are row sub-stochastic (as they should).
For each instance of the random matrix A and

of the vector of final demands F , we construct the
matrices AU and AD as above, and from those we
compute the pairs (U1)i, (D1)i and Ũi, D̃i for any
sector i that we choose. These are all random vari-
ables, whose pairwise covariance is of interest in this
paper.

4. Results

Our results are summarized in the theorem and
corollary below. We show that even in our com-

3This condition is necessary to ensure that Fi’s will be
(typically) sufficiently large that

∑
j(AD)ij in (25) will be

smaller than 1.

1 1.5 2 2.5 3 3.5 4 4.5

D
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2.5
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3.5
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4.5

U

Figure 4: Scatter plot between upstreamness and down-
streamness of sector i = 7 for the N = 200 random
model with exponential disorder with parameters µ = 1,
µF = 0.005. Each of the 1000 blue [red] points is obtained
from one instance of the random “source” matrix A, and
represents the pair of values ((U1)i, (D1)i) [(Ũi, D̃i), respec-
tively]. The thick black line has slope +1.

pletely random model (with no economic or empir-
ically motivated information whatsoever injected in
constructing the I/O table), the upstreamness and
downstreamness of an industrial sector of a single
country are necessarily positively correlated, and
that for any N the slope of the scatter plot between
the two is always equal to +1.

In Figs. 5 and 6 we further numerically check
that our results do not crucially depend on the spe-
cific choice of the way the random matrices AU

and AD are generated, so the positive correlation
between upstreamness and downstreamness of eco-
nomic sectors – and their correlation slope being +1
– seem to be very robust results and rather insen-
sitive to the fine details of the inter-sectorial I/O
matrix.

Theorem 1. Let N ×N matrices be defined as

(AU )ij =
aij∑

j aij + Fi
(26)

(AD)ij =
aji∑

j aij + Fi
, (27)

where aij are i.i.d. variables drawn from an ex-
ponential pdf p(a) = µ exp(−µa), and the Fi’s
are i.i.d. variables drawn from an exponential pdf
pF (F ) = µF exp(−µFF ) with µF ≪ µ to en-
sure that AU and AD are row sub-stochastic. Let
r =

∑
j(AU )1j and r′ =

∑
j(AD)1j. Then the sim-

plified covariance between upstreamness and down-
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streamness (see Eq. (20))

CN (µ, µF ) =
E[rr′]− E[r]E[r′]

(1− E[r])(1− E[r′])
(28)

is given by the exact formula CN (µ, µF ) =
−NN (ϕ)/DN (ϕ), where

NN (ϕ) = (ϕ− 1)
[
N(ϕ− 1)B(1, N + 1)2 2F1(1, N + 1;N + 2;ϕ)2

+ (N − 1)N(ϕ− 1)B(1, N + 1) 2F1(1, N + 1;N + 2;ϕ)(B(1, N) 2F1(1, N ;N + 1;ϕ) + 1)

+ (N + 1)(ϕ− 1)B(1, N + 2) 2F1(1, N + 2;N + 3;ϕ) +N
]

DN (ϕ) = ((N − 1)(ϕ− 1)B(1, N) 2F1(1, N ;N + 1;ϕ) + (ϕ− 1)B(1, N + 1) 2F1(1, N + 1;N + 2;ϕ)

+ 1)(N(ϕ− 1)B(1, N + 1) 2F1(1, N + 1;N + 2;ϕ) + 1) ,

where ϕ = 1 − µF /µ. Here, B(x, y) =
Γ(x)Γ(y)/Γ(x + y) is the Beta function, and 2F1

is the Gaussian hypergeometric function.

Corollary 1. In the hypotheses of Theorem 1, the
slope S(µ, µF ) of the scatter plot between the rank-
1 estimators of downstreamness and upstreamness
(see Eq. (23)) is equal to +1 for any N , irrespective
of the values of µ, µF .

The proofs are deferred to the Appendix.

5. Numerical simulations

We have performed numerical simulations on our
random model, generating m instances of the N ×
N matrix A with i.i.d. exponential entries with
mean 1/µ. We also generate random vectors of final
demands F of size N , with i.i.d. entries with mean
1/µF (with µF ≪ µ).

For each generated instance of the matrix A, we
formed the matrices AU and AD (as defined in
Eqs. (7) and (14)), which have by construction non-
negative elements, and are row sub-stochastic4.
From the matrices AU and AD so generated, we

constructed the vectors of upstreamness U1 and
downstreamness D1 values according to the inver-
sion formulae Eq. (6) and (13), respectively. We
then pick a certain sector index i (for example,
i = 7), and for that index we compute the esti-
mators Ũi and D̃i according to Eqs. (17) and (18)
respectively.
We first show in Figs. 2 and 3 that the “true”

upstreamness (downstreamness) of sector i – com-
puted from the full inversion formulae – is perfectly

4For AU substochasticity is guaranteed by construction.
For AD this is true with overwhelming likelihood provided
that µF ≪ µ.

correlated (with correlation slope = +1) with its
approximate estimator. It is therefore perfectly jus-
tified to use the approximate estimators (instead of
the full definition) to study correlations, as those
are much simpler to handle analytically.

Next, in Table 1, we report values of the “true”
covariance between upstreamness and downsteam-
ness of sector i = 7, obtained from averaging over
m = 10000 numerically generated instances of our
random model, against the values of CN (µ, µF ) an-
alytically computed, and we observe an excellent
agreement between the two.

In Fig. 4 we further provide scatter plots of up-
streamness vs. downstreamness of sector i (both
“true” and approximate) - where each generated in-
stance contributes a single point to the scatter plot.
Again, we observe an excellent collapse onto the di-
agonal line with slope +1, further confirming that
a strong positive correlation between upstreamness
and downstreamness of the same sector is a generic
feature of “structure-less” matrices – provided they
have non-negative entries and are sub-stochastic.

Finally, in Figs. 5 and 6 we provide the same
scatter plots as in Fig. 4, but this time for the
“original” matrix A (and similarly for the vector F )
having i.i.d. non-negative entries drawn from a log-
normal (p(a) = (a

√
2π)−1 exp(−(ln(a) − µ′)2/2))

and uniform (with mean 1/µ and 1/µF ) pdf, re-
spectively. Although we do not provide analytical
results for these cases, these plots further confirm
that the positive correlation with slope +1 between
upstreamness and downstreamness keeps holding
irrespective of the precise details of the way the
“source” matrix A is generated – provided that AU

and AD are non-negative and sub-stochastic.
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Table 1: Covariance between Upstreamness and Down-
streamness in the random model for i = 7 and taken over
m = 10000 samples

µ µF N Cov((U1)i, (D1)i) CN (µ, µF )

1 0.001 200 0.10450 0.10385
2 0.005 400 0.30415 0.29494
3 0.001 300 0.06136 0.06158
1.2 0.001 500 0.17346 0.17260
1.5 0.003 350 0.24224 0.23955

1 1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

4.5

U

D

Figure 5: Scatter plot between upstreamness and down-
streamness of sector i = 7 for the N = 400 random model
with log-normal disorder with parameters µ′ = 1, µ′

F = 6.67.
Each of the 1000 light blue [orange] points is obtained from
one instance of the random “source” matrix A, and rep-
resents the pair of values ((U1)i, (D1)i) [(Ũi, D̃i), respec-
tively]. The thick black line has slope +1.

6. Random reshuffling of the I-O Table

To perform the second series of experiments, we
have taken the empirical I-O matrices including 39
countries for the years 1995-2011 (from WIOD 2013
release). For each country and each year, we have
computed the upstreamness and downstreamness of
that country using Eq. (9) and Eq. (13) respec-
tively, averaging over sectors. In fig. 7, we show
the values of upstreamness for all countries in all
years, spanning a period identical to that consid-
ered in the paper [8]. In Fig. 8, we provide the
scatter plot of upstreamness vs. downstreamness
of each country for three selected years (1996-2003-
2011). As expected, we confirm the general trend
observed in [8], namely that the two measures ap-
pear to be strongly correlated with a slope of the
scatter plot very close to +1.
In Fig. 9, though, we took the same I-O matri-

ces for the entire period 1995-2011 and we randomly

18 19 20 21 22 23 24 25 26
18

19

20

21

22

23

24

25

26

U

D

Figure 6: Scatter plot between upstreamness and down-
streamness of sector i = 7 for the N = 400 random model
with uniform disorder with parameters µ = 1, µF = 0.05.
Each of the 1000 light blue [orange] points is obtained from
one instance of the random “source” matrix A, and rep-
resents the pair of values ((U1)i, (D1)i) [(Ũi, D̃i), respec-
tively]. The thick black line has slope +1.

reshuffled the columns of such matrices according to
a random permutation of the set {1, . . . , N}. The
resulting matrices satisfy the same aggregate con-
straints (namely, the row sums) of the orginal, ac-
tual matrices, but the interactions between sectors
have been randomly scrambled, resulting in an en-
tirely fictitious Global Value Chain, where all eco-
nomic forces at play in the real world have been
neutralized. Still, and quite surprisingly, we find
that the same linear correlation with slope close
to +1 between upstreamness and downstreamness
survives. We have checked that this result is not
an artifact of the specific random permutation of
columns chosen, but keeps holding irrespective of
what new “strength” of interaction is attributed to
pairs of sectors/countries via a random reshuffling
of the old, actual one.

The fact that U-D correlations are so strong and
stable that they survive a complete overhauling of
the actual economic interactions at play in the real
world provides a further strong confirmation that
most – if not all – of such correlations cannot be due
to sophisticated and finely-tuned economic factors
leading to a specific set of inter-sectorial interac-
tions, otherwise any random reshuffling would have
completely annihilated them. These experiments
therefore lend further support to the claim that U-D
correlations are mostly due to structural constraints
that the matrices AU and AD must meet simply
because of the way they are constructed from the

8



interaction matrix A.
Of course, it remains an open problem to then

devise a better measure of downstreamness that is
truly independent of the upstreamness.

Figure 7: Empirical upstreamness vs. empirical down-
streamness (averaged over 35 sectors) for 39 countries for
the years 1995-2001.

Figure 8: Empirical upstreamness vs. empirical down-
streamness (averaged over 35 sectors) for 39 countries in se-
lected years (1996-2003-2011).

7. Discussion

In summary, we have considered two classes of
random Input/Output matrices A to test whether
the “puzzling” correlation detected between up-
streamness and downstreamness at the sector and
country level [8] would survive even if the underly-
ing economic forces and the inter-sectorial depen-
dencies had nothing to do with the real world.
First, we constructed a random model for the ma-

trix A that mimics a closed economy composed of
N economic sectors. We showed analytically that

Figure 9: Upstreamness vs. downstreamness (averaged over
35 sectors) calculated on the empirical and reshuffled ma-
trices for 39 countries for the years 1995-2001. Blue circles
represent values calculated on I-O matrices where columns
have been randomly reshuffled. Grey squares are upstream-
ness/donwstreamness pairs calculated on the original data.

the resulting upstreamness and downstreamness of
a given sector are generically positively correlated,
with a slope of the scatter plot between the two
equal to +1, if the entries of the matrix A are inde-
pendently drawn from an exponential pdf. We also
showed numerically that our results do not depend
very strongly on the pdf of matrix entries. At least
at the level of single countries, our work provides a
comforting “proof of principle” that a strong posi-
tive correlation between upstreamness and down-
streamness of individual sectors as originally de-
fined (see Eqs. (6) and (13)) is bound to materialize
even on a structure-less and zero-information I-O
matrix: one would have to try very hard to concoct
an I-O matrix so extraordinary and finely tuned,
that such correlations were not observed.

Secondly, we started from a real, empirical I-O
matrix A taken from the WIOD Dataset (2013 Re-
lease), which displayed the same kind of correla-
tions between observables as originally detected in
[8]. We performed several experiments where we
simply randomly reshuffled the columns of the in-
teraction matrix prior to computing the matrices
AU and AD from which upstreamness and down-
steamness of the same sector can be determined.
The resulting shuffled interaction matrix A′ is a
new, perfectly legitimate interaction matrix, which
shares the row sums and all other structural con-
straints with the original matrix A, but whose eco-
nomic fabric and inter-sectorial dependencies are
entirely made up: the Global Value Chain that
A′ embodies does not respond to any realistic eco-
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nomic force nor is connected to any realistic eco-
nomic scenario. Yet, we find that the correlations
survive unscathed.

Although derived in the context of a closed-
economy I-O table (see Fig. 1), our results are nev-
ertheless also relevant to the more general setting
of international trade considered in [8] and the puz-
zling correlation highlighted thereof, for a few rea-
sons: (i) the “giant” I-O matrix that includes inter-
country trade blocks satisfies the same constraints
(non-negative entries, and row-stochasticity) as the
single-country one (and thus as well as the ran-
dom model we presented). (ii) Preliminary nu-
merical experiments played on random A matri-
ces with a block structure similar to the giant I-
O matrix did not present evidence of any combi-
nation of heterogeneity in the distribution of en-
tries, sparsity patterns of blocks, or aggregation of
outcomes (either before or after the country up-
streamness/downstreamness were computed) that
was ever able to break the robust positive corre-
lation between upstreamness and downstreamness
observed again in that more general setting – this
time, at the country level – and entirely akin to
the simpler setting described in this paper. (iii)
The model considered here – after a trivial re-
interpretation of the matrix entries – is at the very
least expected to mimic rather accurately what
would happen in the more general inter-country
setting in the two extreme cases of zero and infi-
nite trade barriers between different countries. In
the former case, the “giant” I-O matrix will have
inter-country and intra-country blocks that do not
differ much (statistically), therefore – after country-
wise aggregation – the resulting A matrix will look
very similar to the one we considered in this pa-
per. In the latter case, the “giant” I-O matrix will
be block-diagonal – with inter-country blocks full
of zeros due to the absence of trade – with each
non-zero (intra-country) block being an indepen-
dent replica of the closed economy model proposed
here. While a deeper investigation of the interme-
diate trade barriers setting in the random “giant”
model is surely needed, the aforementioned obser-
vations sharply point towards the observed corre-
lation between upstreamness and downstreamness
also at country level being simply due to structural
and unavoidable algebraic constraints that I-O ta-
bles and their surrogates must satisfy.

Our first series of results rest on the following
assumptions and simplifications:

1. The correlation between “true” upstreamness
and downstreamness of a sector can be faith-
fully probed by using the rank-1 approximants
defined in [30, 31]. This assumption was tested
on empirical I/O data in [30, 31], and on the
random model here in Figs. 2 and 3, by show-
ing that the “true” upstreamness (or down-
streamness) is indeed perfectly correlated with
its rank-1 approximant. Such rank-1 approxi-
mation could only become less reliable if the
true Input/Output matrix were exceedingly
sparse, i.e. with a very large number of zero
entries (see discussion in [31–33]), a situation
that does not often materialize in practice. By
considering national I-O tables available from
the 2013 release of the WIOD [4], we indeed ob-
tain quite high average densities of nonzero el-
ements – between 0.92 and 0.93 across 40 coun-
tries for the years 1995-2011. We have further
checked that a moderate sparsification of our
random model does not qualitatively change
our conclusions, however in future experiments
it will be appropriate to test the consequences
of sparsity more thoroughly.

2. We have assumed that the entries of the matrix
A were independent and identically distributed
(i.i.d.). Some preliminary results (not shown)
where this assumption has been relaxed indi-
cate that heterogeneity in the pdfs of the en-
tries of A may not play a major role and is
generally insufficient to change the conclusions
of our analysis.

3. We used some simplifications (for instance, ap-
pealing to the LLN) to make some progress in
the analytical calculations. All approximations
are controlled and have been carefully tested.

Apart from performing a more thorough study
on the effect of sparsity and heterogeneity in ran-
dom models of I-O tables, in future studies it will
be interesting to try to compute analytically the
full covariance Eq. (16) for our random model and
for various different pdfs of the entries of the I/O
matrix A, i.e. without employing any rank-1 proxy
and/or LLN approximations. This task will require
handling the average of (products of) inverse ma-
trices (coming from the definitions of upstreamness
and downstreamness, see Eq. (6) and (13)), which
is possible in some cases using techniques from sta-
tistical physics [30].
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Appendix A. Derivation of Theorem 1 and
Corollary 1

We need to compute E[r], E[r′] and E[rr′] sepa-
rately. We have

E[r] =
∫ ∞

0

N∏
i=1

daip(ai)

∫ ∞

0

dF pF (F )

∑
k ak∑

k ak + F
,

(A.1)
where for simplicity we denoted ak ≡ a1k and F ≡
F1. Using the identity

1

ξ
=

∫ ∞

0

ds e−ξs ξ > 0 (A.2)

we have

E[r] = µNµF

∫ ∞

0

N∏
i=1

dai

∫ ∞

0

dFds
∑
k

ak×

× e−µ
∑

k ak−µFF−s(
∑

k ak+F )

= µNµFN

∫ ∞

0

ds

[∫ ∞

0

dae−µa−sa

]N−1

×

×
∫ ∞

0

dy ye−µy−sy

∫ ∞

0

dFe−µFF−sF

= µNµFNJ(N + 1) (A.3)

where

J(k) =

∫ ∞

0

ds
1

(µ+ s)k
1

µF + s
=

=
1

µk

∫ ∞

0

dt(1 + t)−1

(
1 +

µF

µ
t

)−k

=

=
1

µk
B(1, k) 2F1(k, 1; k + 1; 1− µF /µ)

(A.4)

from [34], formula 3.197.5 (pag. 335) with λ = 1,
ν = −1, α = µF /µ and µ̃ = −k. Here, B(·, ·)
is the Beta function, and 2F1 is a hypergeometric
function.
Similarly

E[r′] = µ2N−1µF

∫ ∞

0

N∏
i=1

daip(ai)

N∏
j=2

dbjp(bj)×

×
∫ ∞

0

dF pF (F )
a1 +

∑
k≥2 bk∑

k ak + F

= µ2N−1µF

[
1

µN−1
J(N + 1) +

N − 1

µN
J(N)

]
,

(A.5)

where for simplicity we denoted a1j ≡ aj (for j =
1, . . . , N), and ak1 ≡ bk (for k = 2, . . . , N). To
prove this, we write

E[r′] = µ2N−1µF [I1 + I2] , (A.6)

where

I1 =

∫ ∞

0

ds

[∫ ∞

0

dxe−µx−sx

]N−1 ∫ ∞

0

dy ye−µy−sy

×
[∫ ∞

0

dz e−µz

]N−1 ∫ ∞

0

dFe−µFF−sF

=
1

µN−1

∫ ∞

0

ds
1

(µ+ s)N+1(µF + s)
=

J(N + 1)

µN−1

(A.7)

and

I2 = (N − 1)

∫ ∞

0

ds

[∫ ∞

0

dx e−µx−sx

]N
×

×
∫ ∞

0

dFe−µFF−sF

[∫ ∞

0

dye−µy

]N−2

×∫ ∞

0

dz ze−µz =
N − 1

µN

∫ ∞

0

ds
1

(µ+ s)N (µF + s)

=
N − 1

µN
J(N) .

Finally

E[rr′] = µ2N−1µF

∫ ∞

0

N∏
i=1

daip(ai)

N∏
j=2

dbjp(bj)dF∑
ℓ aℓ∑

k ak + F

a1 +
∑

k≥2 bk∑
k ak + F

=

= µ2N−1µF

[
2

µN−1
L(N + 2) +

N − 1

µN
L(N + 1)

+
N − 1

µN−1
L(N + 2) +

(N − 1)2

µN
L(N + 1)

]
, (A.8)

where

L(k) =

∫ ∞

0

dsdt
1

µF + s+ t

1

(µ+ s+ t)k
=

=
µ1−k

k − 1
− µFJ(k) . (A.9)

Eq. (A.8) follows from writing
∑

ℓ aℓ = a1 +∑
ℓ ̸=1 aℓ, and applying the “lifting-up” identity

(A.2) twice, which yields

E[rr′] = µ2N−1µF [K1 +K2 +K3 +K4] , (A.10)
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where

K1 =

∫
dx1 · · · dxNdF1dy2 · · · dyNdsdt

e−µ
∑

k xk−µ
∑

k≥2 yk−µFF1x2
i×

× e−s(
∑

k xk+F1)−t(
∑

k xk+F1) =

=
1

µN−1

∫
dsdt

1

µF + s+ t

[∫
dx e−µx−(s+t)x

]N−1

×
∫

dx x2e−µx−(s+t)x

=
2

µN−1

∫ ∞

0

dsdt
1

µF + s+ t

1

(µ+ s+ t)N+2
=

=
2

µN−1
L(N + 2) . (A.11)

K2 =

∫
dx1 · · · dxNdF1dy2 · · · dyNdsdt

× e−µ
∑

k xk−µ
∑

k≥2 yk−µFF1xi

∑
k≥2

yk×

× e−s(
∑

k xk+F1)−t(
∑

k xk+F1) =

= (N − 1)

∫
dsdt

1

µF + s+ t

[∫
dx e−µx−(s+t)x

]N−1

×
∫

dx xe−µx−(s+t)x

×
[∫

dye−µy

]N−2 ∫
dy ye−µy

=
N − 1

µN

∫ ∞

0

dsdt
1

µF + s+ t

1

(µ+ s+ t)N+1
=

=
N − 1

µN
L(N + 1) . (A.12)

K3 =

∫
dx1 · · · dxNdF1dy2 · · · dyNdsdt

× e−µ
∑

k xk−µ
∑

k≥2 yk−µFF1xi

∑
ℓ ̸=i

xℓ×

× e−s(
∑

k xk+F1)−t(
∑

k xk+F1) =

= (N − 1)

∫
dsdt

1

µF + s+ t

[∫
dx xe−µx−(s+t)x

]2
×
[∫

dx e−µx−(s+t)x

]N−2

×
[∫

dye−µy

]N−1

=
N − 1

µN−1

∫ ∞

0

dsdt
1

µF + s+ t

1

(µ+ s+ t)N+2
=

=
N − 1

µN−1
L(N + 2) . (A.13)

K4 =

∫
dx1 · · · dxNdF1dy2 · · · dyNdsdt

× e−µ
∑

k xk−µ
∑

k≥2 yk−µFF1
∑
k≥2

yk
∑
ℓ ̸=i

xℓ×

× e−s(
∑

k xk+F1)−t(
∑

k xk+F1) =

= (N − 1)2
∫

dsdt
1

µF + s+ t

×
[∫

dx xe−µx−(s+t)x

] [∫
dx e−µx−(s+t)x

]N−1

×
[∫

dye−µy

]N−2 ∫
dy ye−µy

=
(N − 1)2

µN

∫ ∞

0

dsdt
1

µF + s+ t

1

(µ+ s+ t)N+1
=

=
(N − 1)2

µN
L(N + 1) . (A.14)

Collecting all terms and simplifying, we arrive at
the formula announced in Theorem 1. Plotting the
covariance formula as a function of N for different
values of µ, µF reveals that the covariance is always
positive and increasing (see Fig. A.10).
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Figure A.10: Covariance CN (µ, µF ) between the approx-
imate upstreamness and downstreamness for the random
model (exact formula in Theorem 1). The parameters
(µ, µF ) are (1, 0.1) (blue), (2, 0.1) (orange), (2, 0.05) (green),
(2, 0.01) (red).

To prove the Corollary 1, we need to further com-
pute E[r2] and then simplify the resulting expres-
sion for the slope (23), yielding a slope = +1 for
any N .
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E[r2] =
∫ ∞

0

N∏
i=1

daip(ai)

∫ ∞

0

dF pF (F )

[ ∑
k ak∑

k ak + F

]2
= µNµF

∫
dadFds se−µ

∑
k ak−µFF×(∑

k

ak

)2

e−s(
∑

k ak+F )

= µNµF

[
N

∫
dadFds se−µ

∑
k ak−µFFa21e

−s(
∑

k ak+F )+

+ (N2 −N)

∫
dadFds se−µ

∑
k ak−µFFa1a2e

−s(
∑

k ak+F )

]
= µNµFN

∫ ∞

0

ds s

[∫
dxe−µx−sx

]N−1 ∫
dy y2e−µy−sy×

×
∫

dFe−µFF−sF + µNµF (N
2 −N)

∫ ∞

0

ds s×

×
[∫

dxe−µx−sx

]N−2 [∫
dy ye−µy−sy

]2 ∫
dFe−µFF−sF

= 2µNµFN

∫ ∞

0

ds
s

(µ+ s)N+2

1

µF + s
+

+ µNµF (N
2 −N)

∫ ∞

0

ds
s

(µ+ s)N+2

1

µF + s

= µNµF (N
2 +N)L(N + 2) ■
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[8] P. Antràs and D. Chor (2018). On the measurement
of upstreamness and downstreamness in global value
chains. Working Paper 24185 http://www.nber.org/

papers/w24185

[9] Z. Wang, S. J. Wei, X. Yu, and K. Zhu (2017). Charac-
terizing global value chains: production length and up-
streamness. Working paper No. w23261. National Bu-
reau of Economic Research.

[10] B. Peterson and M. Olinick (1982). Leontief models,
Markov chains, Substochastic matrices, and positive so-
lutions of matrix equations. Mathematical modelling 3,
221-239.

[11] J. McNerney, C. Savoie, F. Caravelli, and J. D. Farmer
(2021). How production networks amplify economic
growth. PNAS 119 (1) e2106031118.

[12] J. McNerney (2012). Applications of Statistical Physics
to Technology Price Evolution. Ph.D. thesis, Boston
University.

[13] P. S. M. Kop Jansen (1994). Analysis of multipliers in
stochastic input-output models. Regional Science and
Urban Economics 24, 55-74.

[14] P. Kop Jansen and T. Ten Raa (1990). The choice of
model in the construction of Input-Output coefficients
matrices. International Economic Review 31, No. 1, pp.
213- 227.

[15] W. D. Evans (1954). The Effect of Structural Matrix Er-
rors on Interindustry Relations Estimates. Economet-
rica 22 (n. 4), pp. 461-480.

[16] R. E. Quandt (1958). Probabilistic errors in the Leontief
system. Naval Research Logistics Quarterly 5, pp. 155-
170.

[17] A. Simonovits (1975). A Note on the Underestimation
and Overestimation of the Leontief Inverse. Economet-
rica 43, pp. 493-498.

[18] G. R. West (1986). A stochastic analysis of an input-
output model. Econometrica: Journal of the Economet-
ric Society 54, 363-374.

[19] H. Kogelschatz (2007). On the Solution of Stochastic
input-output-Models. Discussion Paper Series n. 447,
University of Heidelberg.

[20] M. Kozicka (2019). Novel approach to stochastic Input-
Output modeling. RAIRO-Oper. Res. 53, 1155–1169
https://doi.org/10.1051/ro/2018046.

[21] J. L. Katz and R. L. Burford (1985). Shortcut formulas
for output, income and employment multipliers. The
Annals of Regional Science 19(2), 61-76.

[22] R. L. Burford (1977). Regional input-output multipliers
without a full IO table. The Annals of Regional Science
11(3), 21-38.

[23] R. L. Drake (1976). A short-cut to estimates of regional
input-output multipliers: methodology and evaluation.
International Regional Science Review 1(2), 1-17.

[24] P. J. Phibbs and A. J. Holsman (1981). An evaluation
of the Burford Katz short cut technique for deriving
input-output multipliers. The Annals of Regional Sci-
ence 15(3), 11-19.

[25] R. C. Jensen and G. J. D. Hewings (1985). Shortcut
‘Input-Output’ Multipliers: The Resurrection Problem
(a Reply). Environment and Planning A 17(11), 1551-
1552.

[26] R. C. Jensen and G. J. D. Hewings (1985). Short-
cut ‘input-output’ multipliers: A requiem. Environment
and Planning A 17(6), 747-759.

[27] R. L. Burford and J. L. Katz (1985). Shortcut ‘input-
output’ multipliers, alive and well: Response to Jensen
and Hewings. Environment and Planning A 17(11),
1541-1549.

[28] Suganuma, K. (2016) Upstreamness in the global value
chain: Manufacturing and services. In Meeting of the

13

http://www.nber.org/papers/w24185
http://www.nber.org/papers/w24185
https://doi.org/10.1051/ro/2018046


Japanese Economic Association at Nagoya University
on June (Vol. 18, p. 19) .
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